Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(20): 6002-6009, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739273

ABSTRACT

Two-dimensional van der Waals heterostructures (2D-vdWHs) based on transition metal dichalcogenides (TMDs) provide unparalleled control over electronic properties. However, the interlayer coupling is challenged by the interfacial misalignment and defects, which hinders a comprehensive understanding of the intertwined electronic orders, especially superconductivity and charge density wave (CDW). Here, by using pressure to regulate the interlayer coupling of non-centrosymmetric 6R-TaS2 vdWHs, we observe an unprecedented phase diagram in TMDs. This phase diagram encompasses successive suppression of the original CDW states from alternating H-layer and T-layer configurations, the emergence and disappearance of a new CDW-like state, and a double superconducting dome induced by different interlayer coupling effects. These results not only illuminate the crucial role of interlayer coupling in shaping the complex phase diagram of TMD systems but also pave a new avenue for the creation of a novel family of bulk heterostructures with customized 2D properties.

2.
Nat Commun ; 15(1): 4428, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789448

ABSTRACT

Subducting sedimentary layer typically contains water and hydrated clay minerals. The stability of clay minerals under such hydrous subduction environment would therefore constraint the lithology and physical properties of the subducting slab interface. Here we show that pyrophyllite (Al2Si4O10(OH)2), one of the representative clay minerals in the alumina-silica-water (Al2O3-SiO2-H2O, ASH) system, breakdowns to contain further hydrated minerals, gibbsite (Al(OH)3) and diaspore (AlO(OH)), when subducts along a water-saturated cold subduction geotherm. Such a hydration breakdown occurs at a depth of ~135 km to uptake water by ~1.8 wt%. Subsequently, dehydration breakdown occurs at ~185 km depth to release back the same amount of water, after which the net crystalline water content is preserved down to ~660 km depth, delivering a net amount of ~5.0 wt% H2O in a phase assemblage containing δ-AlOOH and phase Egg (AlSiO3(OH)). Our results thus demonstrate the importance of subducting clays to account the delivery of ~22% of water down to the lower mantle.

3.
Inorg Chem ; 63(21): 9763-9770, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38739043

ABSTRACT

The delafossites are a class of layered metal oxides that are notable for being able to exhibit optical transparency alongside an in-plane electrical conductivity, making them promising platforms for the development of transparent conductive oxides. Pressure-induced polymorphism offers a direct method for altering the electrical and optical properties in this class, and although the copper delafossites have been studied extensively under pressure, the silver delafossites remain only partially studied. We report two new high-pressure polymorphs of silver ferrite delafossite, AgFeO2, that are stabilized above ∼6 and ∼14 GPa. In situ X-ray diffraction and vibrational spectroscopy measurements are used to examine the structural changes across the two phase transitions. The high-pressure structure between 6 and 14 GPa is assigned as a monoclinic C2/c structure that is analogous to the high-pressure phase reported for AgGaO2. Nuclear resonant forward scattering reveals no change in the spin state or valence state at the Fe3+ site up to 15.3(5) GPa.

4.
Chem Mater ; 36(7): 3128-3137, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617806

ABSTRACT

Lacunar spinels, represented by AM4X8 compounds (A = Ga or Ge; M = V, Mo, Nb, or Ta; X = S or Se), form a unique group of ternary chalcogenide compounds. Among them, GeV4S8 has garnered significant attention due to its distinctive electrical and magnetic properties. While previous research efforts have primarily focused on studying how this material behaves under cooling conditions, pressure is another factor that determines the state and characteristics of solid matter. In this study, we employed a diamond anvil cell in conjunction with high-energy synchrotron X-ray diffraction, Raman spectroscopy, four-point probes, and theoretical computation to thoroughly investigate this material. We found that the structural transformation from cubic to orthorhombic was initiated at 34 GPa and completed at 54 GPa. Through data fitting of volume vs pressure, we determined the bulk moduli to be 105 ± 4 GPa for the cubic phase and 111 ± 12 GPa for the orthorhombic phase. Concurrently, electrical resistance measurements indicated a semiconductor-to-nonmetallic conductor transition at ∼15 GPa. Moreover, we experimentally assessed the band gaps at different pressures to validate the occurrence of the electrical phase transition. We infer that the electrical phase transition correlates with the valence electrons in the V4 cluster rather than the crystal structure transformation. Furthermore, the computational results, electronic density of states, and band structure verified the experimental observation and facilitated the understanding of the mechanism governing the electrical phase transition in GeV4S8.

5.
Nat Commun ; 15(1): 3001, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589388

ABSTRACT

Designing two-dimensional halide perovskites for high-performance optoelectronic applications requires deep understanding of the structure-property relationship that governs their excitonic behaviors. However, a design framework that considers both intra and interlayer structures modified by the A-site and spacer cations, respectively, has not been developed. Here, we use pressure to synergistically tune the intra and interlayer structures and uncover the structural modulations that result in improved optoelectronic performance. Under applied pressure, (BA)2(GA)Pb2I7 exhibits a 72-fold boost of photoluminescence and 10-fold increase of photoconductivity. Based on the observed structural change, we introduce a structural descriptor χ that describes both the intra and interlayer characteristics and establish a general quantitative relationship between χ and photoluminescence quantum yield: smaller χ correlates with minimized trapped excitons and more efficient emission from free excitons. Building on this principle, we design a perovskite (CMA)2(FA)Pb2I7 that exhibits a small χ and an impressive photoluminescence quantum yield of 59.3%.

6.
Sci Rep ; 14(1): 6079, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480812

ABSTRACT

Understanding changes in material properties through external stimuli plays a key role in validating the expected performance of materials and engineering material properties in a controlled manner. Here, we introduce a fundamental protocol to deduce dehydration reactions kinetics of water confined in nanopore channels, with the cyclosilicate beryl as the scaffold of interest, using time-resolved synchrotron X-ray diffraction (SXRD), in the temperature interval of 298-1038 K. The temperature-dependent intensity ( I ) of the strongest reflection (112) was used as the crystallite variable. An estimation of an isobaric thermal crystallite coefficient, k , analogous with the isobaric thermal expansion coefficient, established the rate of relative crystallization as a function of temperature, ∂ I ∂ T . A plot of lnk and 1 T gives rise to two kinetic steps, indicating a slow dehydration stage up to ~ 700 K and a fast dehydration stage up to the investigated temperature 1038 K. The crystal structure of beryl determined up to 1038 K, in temperature increment as small as 10 K, indicates the presence of channel ions Na and Fe and a gradual decrease of water upon heating.

7.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38534017

ABSTRACT

Dirac materials offer exciting opportunities to explore low-energy carrier dynamics and novel physical phenomena, especially their interaction with magnetism. In this context, this work focuses on studies of pressure control on the magnetic state of EuMnBi2, a representative magnetic Dirac semimetal, through time-domain synchrotron Mössbauer spectroscopy in151Eu. Contrary to the previous report that the antiferromagnetic order is suppressed by pressure above 4 GPa, we have observed robust magnetic order up to 33.1 GPa. Synchrotron-based x-ray diffraction experiment on a pure EuMnBi2sample shows that the tetragonal crystal lattice remains stable up to at least 31.7 GPa.

8.
Inorg Chem ; 63(5): 2616-2626, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38267376

ABSTRACT

Layered materials have attracted extensive attention due to their exceptional physical and chemical properties. Understanding the structural evolution of such materials under high pressure is crucial for the development of new functional materials. In this study, the structure evolution of the synthesized layered rare-earth hydroxyhalide YCl(OH)2 under high pressures up to approximately 9.4 GPa was explored by using a diamond anvil cell combined with synchrotron single-crystal X-ray diffraction. Simultaneously, high-pressure Raman spectroscopy experiment was conducted to 10.3 GPa. Our findings indicate that YCl(OH)2 maintains its symmetry within the experimental pressure range. The pressure-volume data of YCl(OH)2 were fitted to the third-order Birch-Murnaghan equation of state (EoS) to derive its EoS parameters including zero-pressure unit-cell volume (VT0), isothermal bulk modulus (KT0), and its pressure derivative (K'T0): VT0 = 142.47 (1) Å3, KT0 = 38.2 (18) GPa, and K'T0 = 9.8 (1). However, the unit-cell parameters a, b, and c exhibit a distinct compressional behavior, with the a-axis being the most compressible and the b-axis being the least. Particularly noteworthy is the observation that YCl(OH)2 displays a negative linear compressibility along the b-axis within the pressure range of 0.4-5.3 GPa. Further detailed structure refinement and Raman spectroscopy analyses indicate that the anomalous behavior of the b-axis could be attributed to the formation of the O-H···O hydrogen bonding chains along the b direction. Moreover, the coordination number of Y3+ increased from 8 to 9 as the pressure reached 5.3 GPa due to the reduction of the interlayer spacing upon compression, ultimately leading to the closure of the interlayer gap.

9.
J Phys Chem Lett ; 15(1): 76-80, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38133800

ABSTRACT

Water-in-salt electrolytes have attracted considerable interest in the past decade for advanced lithium-ion batteries, possessing important advantages over the non-aqueous electrolytes currently in use. A battery with a LiTFSI-water electrolyte was demonstrated in which an operating window of 3 V is made possible by a solid-electrolyte interface. Viscosity is an important property for such electrolytes, because high viscosity is normally associated with low ionic conductivity. Here, we investigate shear and longitudinal viscosities using shear stress and compressional longitudinal stress measurements as functions of frequency and concentration. We find that both viscosities are frequency-dependent and exhibit almost identical frequency and concentration dependences in the high-concentration region. A comparison to quasielastic neutron scattering experiments suggests that both are governed by structural relaxation of the TFSI- network. Thus, LiFTSI-water electrolytes appear to be an unusual case of a non-Newtonian fluid, where shear and longitudinal viscosities are determined by the same relaxation mechanism.

10.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38054834

ABSTRACT

Externally heated diamond anvil cells provide a stable and uniform thermal environment, making them a versatile device to simultaneously generate high-pressure and high-temperature conditions in various fields of research, such as condensed matter physics, materials science, chemistry, and geosciences. The present study features the Externally Heated Diamond ANvil Cell Experimentation (EH-DANCE) system, a versatile configuration consisting of a diamond anvil cell with a customized microheater for stable resistive heating, bidirectional pressure control facilitated by compression and decompression membranes, and a water-cooled enclosure suitable for vacuum and controlled atmospheres. This integrated system excels with its precise control of both pressure and temperature for mineral and materials science research under extreme conditions. We showcase the capabilities of the system through its successful application in the investigation of the melting temperature and thermal equation of state of high-pressure ice-VII at temperatures up to 1400 K. The system was also used to measure the elastic properties of solid ice-VII and liquid H2O using Brillouin scattering and Raman spectra of carbonates using Raman spectroscopy, highlighting the potential of the EH-DANCE system in high-pressure research.

11.
Nat Commun ; 14(1): 7336, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957142

ABSTRACT

The high-pressure melting curve of FeO controls key aspects of Earth's deep interior and the evolution of rocky planets more broadly. However, existing melting studies on wüstite were conducted across a limited pressure range and exhibit substantial disagreement. Here we use an in-situ dual-technique approach that combines a suite of >1000 x-ray diffraction and synchrotron Mössbauer measurements to report the melting curve for Fe1-xO wüstite to pressures of Earth's lowermost mantle. We further observe features in the data suggesting an order-disorder transition in the iron defect structure several hundred kelvin below melting. This solid-solid transition, suggested by decades of ambient pressure research, is detected across the full pressure range of the study (30 to 140 GPa). At 136 GPa, our results constrain a relatively high melting temperature of 4140 ± 110 K, which falls above recent temperature estimates for Earth's present-day core-mantle boundary and supports the viability of solid FeO-rich structures at the roots of mantle plumes. The coincidence of the defect order-disorder transition with pressure-temperature conditions of Earth's mantle base raises broad questions about its possible influence on key physical properties of the region, including rheology and conductivity.

12.
J Am Chem Soc ; 145(43): 23842-23848, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37859342

ABSTRACT

Organic-inorganic halide perovskites possess unique electronic configurations and high structural tunability, rendering them promising for photovoltaic and optoelectronic applications. Despite significant progress in optimizing the structural characteristics of the organic cations and inorganic framework, the role of organic-inorganic interactions in determining the structural and optical properties has long been underappreciated and remains unclear. Here, by employing pressure tuning, we realize continuous regulation of organic-inorganic interactions in a lead halide perovskite, MHyPbBr3 (MHy+ = methylhydrazinium, CH3NH2NH2+). Compression enhances the organic-inorganic interactions by strengthening the Pb-N coordinate bonding and N-H···Br hydrogen bonding, which results in a higher structural distortion in the inorganic framework. Consequently, the second-harmonic-generation (SHG) intensity experiences an 18-fold increase at 1.5 GPa, and the order-disorder phase transition temperature of MHyPbBr3 increases from 408 K under ambient pressure to 454 K at the industrially achievable level of 0.5 GPa. Further compression triggers a sudden non-centrosymmetric to centrosymmetric phase transition, accompanied by an anomalous bandgap increase by 0.44 eV, which stands as the largest boost in all known halide perovskites. Our findings shed light on the intricate correlations among organic-inorganic interactions, octahedral distortion, and SHG properties and, more broadly, provide valuable insights into structural design and property optimization through cation engineering of halide perovskites.

13.
Angew Chem Int Ed Engl ; 62(37): e202304494, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37464980

ABSTRACT

Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C6 H5 )4 P]2 SbCl5 . In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb3+ and the π electrons of benzene ring (lp-π interaction) serves as an unexpected "bridge" for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic-inorganic hybrid systems.

14.
J Phys Chem Lett ; 14(16): 3891-3897, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37071620

ABSTRACT

Crystals with significant length reduction at an accessible low pressure are highly desirable for piezo-responsive devices. Here, we show a molecular crystal [Ni(en)3](ox) (en = ethylenediamine and ox = oxalate anion) that exhibits an abrupt shape change with a contraction rate of ∼4.7% along its c axis near the phase transition pressure of ∼0.2 GPa. High-pressure single-crystal X-ray diffraction and Raman spectroscopy measurements reveal that this material undergoes a first-order ferroelastic transition from high-symmetry trigonal P3̅1c to low-symmetry monoclinic P21/n at ∼0.2 GPa. The oxalate anions serve as unique components, and their disorder-order transformation and rotation of 90° through cooperative intermolecular hydrogen bonding triggered unconventional anisotropic microsize contraction under compression, which can be appreciated visually. Such a prominent directional deformation at a low pressure driven by molecular motors of oxalate anions provides insights for the design of novel molecular crystal-based piezo-responsive switches and actuators in deep-sea environments.

15.
Nano Lett ; 23(6): 2121-2128, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36877932

ABSTRACT

Two-dimensional (2D) van der Waals heterostructures (VDWHs) containing a charge-density wave (CDW) and superconductivity (SC) have revealed rich tunability in their properties, which provide a new route for optimizing their novel exotic states. The interaction between SC and CDW is critical to its properties; however, understanding this interaction within VDWHs is very limited. A comprehensive in situ study and theoretical calculation on bulk 4Hb-TaSe2 VDWHs consisting of alternately stacking 1T-TaSe2 and 1H-TaSe2 monolayers are investigated under high pressure. Surprisingly, the superconductivity competes with the intralayer and adjacent-layer CDW order in 4Hb-TaSe2, which results in substantially and continually boosted superconductivity under compression. Upon total suppression of the CDW, the superconductivity in the individual layers responds differently to the charge transfer. Our results provide an excellent method to efficiently tune the interplay between SC and CDW in VDWHs and a new avenue for designing materials with tailored properties.

16.
J Phys Condens Matter ; 35(26)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36990098

ABSTRACT

The amorphous selenium (a-Se) was studied via x-ray diffraction (XRD) under pressures ranging from ambient pressure up to 30 GPa at room temperature to study its high-pressure behavior. Two compressional experiments on a-Se samples, with and without heat treatment, respectively, were conducted. Contrary to the previous reports that a-Se crystallized abruptly at around 12 GPa, in this work we report an early partially crystallized state at 4.9 GPa before completing the crystallization at around 9.5 GPa based onin-situhigh pressure XRD measurements on the a-Se with 70 °C heat treatment. In comparison, crystallization pressure on another a-Se sample without thermal treatment history was observed to be 12.7 GPa, consistent with the previously reported crystallization pressure. Thus, it is proposed in this work that prior heat treatment of a-Se can result in an earlier crystallization under high pressure, which helps to understand the possible mechanism caused by the previous controversial reports on pressure induced crystallization behavior in a-Se.

17.
Angew Chem Int Ed Engl ; 62(14): e202217023, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36757113

ABSTRACT

Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid. The resulting product possesses high-density, pendant carboxyl functionalization along both sides of the backbone, enabling new opportunities for the post-synthetic processing and chemical modification of nanothread materials applicable to a broad range of potential applications.

18.
Nature ; 611(7934): 88-92, 2022 11.
Article in English | MEDLINE | ID: mdl-36261527

ABSTRACT

Accurate knowledge of the mineralogy is essential for understanding the lower mantle, which represents more than half of Earth's volume. CaSiO3 perovskite is believed to be the third-most-abundant mineral throughout the lower mantle, following bridgmanite and ferropericlase1-3. Here we experimentally show that the calcium solubility in bridgmanite increases steeply at about 2,300 kelvin and above 40 gigapascals to a level sufficient for a complete dissolution of all CaSiO3 component in pyrolite into bridgmanite, resulting in the disappearance of CaSiO3 perovskite at depths greater than about 1,800 kilometres along the geotherm4,5. Hence we propose a change from a two-perovskite domain (TPD; bridgmanite plus CaSiO3 perovskite) at the shallower lower mantle to a single-perovskite domain (SPD; calcium-rich bridgmanite) at the deeper lower mantle. Iron seems to have a key role in increasing the calcium solubility in bridgmanite. The temperature-driven nature can cause large lateral variations in the depth of the TPD-to-SPD change in response to temperature variations (by more than 500 kilometres). Furthermore, the SPD should have been thicker in the past when the mantle was warmer. Our finding requires revision of the deep-mantle mineralogy models and will have an impact on our understanding of the composition, structure, dynamics and evolution of the region.

19.
Adv Sci (Weinh) ; 9(31): e2202973, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36180391

ABSTRACT

Transparent conducting oxides (TCO) with high electrical conductivity and high visible light transparency are desired for a wide range of high-impact engineering. Yet, usually, a compromise must be made between conductivity and transparency, limiting the practical application of a TCO to the next level. Furthermore, TCO performance is highly sensitive to composition, so conventional synthesis methods, such as chemical doping, cannot unravel the mysteries of the quantitative structure-performance relationship. Thus, improving the fundamental understanding or creating materials-by-design has limited success. Here, a strategy is proposed to modulate the lattice and electronic and optical properties precisely by applying pressure on a TCO. Strikingly, after compression-decompression treatment on the indium titanium oxides (ITiO), a highly transparent and metastable phase with two orders of magnitude enhancement in conductivity is synthesized from an irreversible phase transition. Moreover, this phase possesses previously unattainable filter efficiency on hazardous blue light up to 600 °C, providing potential for healthcare-related applications with strong thermal stability up to 200 °C. These results demonstrate that pressure engineering is a clean and effective tool for tailoring functional materials that are not achievable by other means, providing an exciting alternative property-tuning dimension in materials science.

20.
J Phys Condens Matter ; 34(41)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35896102

ABSTRACT

Eu(Fe0.75Ru0.25)2As2is an intriguing system with unusual coexistence of superconductivity and ferromagnetism, providing a unique platform to study the nature of such coexistence. To establish a magnetic phase diagram, time-domain synchrotron Mössbauer experiments in151Eu have been performed on a single crystalline Eu(Fe0.75Ru0.25)2As2sample under hydrostatic pressures and at low temperatures. Upon compression the magnetic ordering temperature increases sharply from 20 K at ambient pressure, reaching ∼49 K at 10.1 GPa. With further compression, the magnetic order is suppressed and eventually collapses. Isomer shift values from Mössbauer measurements and x-ray absorption spectroscopy data at EuL3edge show that pressure drives Eu ions to a homogeneous intermediate valence state with mean valence of ∼2.4 at 27.4 GPa, possibly responsible for the suppression of magnetism. Synchrotron powder x-ray diffraction experiment reveals a tetragonal to collapsed-tetragonal structural transition around 5 GPa, a lower transition pressure than in the parent compound. These results provide guidance to further work investigating the interplay of superconductivity and magnetism.

SELECTION OF CITATIONS
SEARCH DETAIL
...