Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134193, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569341

ABSTRACT

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Subject(s)
Arsenicals , Iron Compounds , Iron , Minerals , Sulfides , Sulfides/chemistry , Iron/chemistry , Arsenicals/chemistry , Kinetics , Minerals/chemistry , Iron Compounds/chemistry , Oxidation-Reduction , Solubility , Arsenic/chemistry , Biofilms , Acidithiobacillus/metabolism
2.
Front Microbiol ; 13: 973568, 2022.
Article in English | MEDLINE | ID: mdl-36106077

ABSTRACT

Red mud (RM) is a highly alkaline polymetallic waste generated via the Bayer process during alumina production. It contains metals that are critical for a sustainable development of modern society. Due to a shortage of global resources of many metals, efficient large-scale processing of RM has been receiving increasing attention from both researchers and industry. This study investigated the solubilization of metals from RM, together with RM dealkalization, via sulfur (S0) oxidation catalyzed by the moderately thermophilic bacterium Sulfobacillus thermosulfidooxidans. Optimization of the bioleaching process was conducted in shake flasks and 5-L bioreactors, with varying S0:RM mass ratios and aeration rates. The ICP analysis was used to monitor the concentrations of dissolved elements from RM, and solid residues were analyzed for surface morphology, phase composition, and Na distribution using the SEM, XRD, and STXM techniques, respectively. The results show that highest metal recoveries (89% of Al, 84% of Ce, and 91% of Y) were achieved with the S0:RM mass ratio of 2:1 and aeration rate of 1 L/min. Additionally, effective dealkalization of RM was achieved under the above conditions, based on the high rates (>95%) of Na, K, and Ca dissolution. This study proves the feasibility of using bacterially catalyzed S0 oxidation to simultaneously dealkalize RM and efficiently extract valuable metals from the amassing industrial waste.

3.
Water Res ; 223: 118957, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35970106

ABSTRACT

Mining activities expose sulfidic minerals including arsenopyrite (FeAsS) to acid mine drainage (AMD). The subsequent release of toxic arsenic (As) can have great negative implications for the environment and human health. This study investigated the evolution of secondary products and As speciation transformations during arsenopyrite bio-oxidation in AMD collected from a polymetallic mine. Immobilization of the As solubilized via arsenopyrite bio-oxidation using red mud (RM) was also studied. The results show that the high ionic strength (concentrations of dissolved Fe3+, SO42-, and Ca2+ reached values up to 0.75, 3.38, and 0.35 g/L, respectively) and redox potential (up to +621 mV) of AMD (caused primarily by Fe3+) enhanced the dissolution of arsenopyrite. A high [Fe]aq/[As]aq ratio in the AMD favored the precipitation of tooeleite during arsenopyrite bio-oxidation, and the formation of other poorly crystalline products such as schwertmannite and amorphous ferric arsenate also contributed to As immobilization. Bacterial cells served as important nucleation sites for the precipitation of mineral phases. Arsenopyrite completely dissolved after 12 days of bio-oxidation in AMD and the [As]aq (mainly present as As(III)) reached 1.92 g/L, while a greater [As]aq was observed in a basal salts medium (BSM) assay (reaching 3.02 g/L). An RM addition significantly promoted As(III) immobilization, with final [As(III)]aq decreasing to 0.16 and 1.43 g/L in AMD and BSM assays respectively. No oxidation of As(III) was detected during the immobilization process. These findings can help predict As release from arsenopyrite on contact with AMD and, on a broader scale, assist in designing remediation and treatment strategies to mitigate As contamination in mining.


Subject(s)
Arsenic , Acids , Arsenates , Arsenic/chemistry , Arsenicals , Humans , Iron Compounds , Minerals/chemistry , Oxidation-Reduction , Salts , Sulfides
4.
J Hazard Mater ; 437: 129308, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35714541

ABSTRACT

A novel sinter method using ZnO as the activator instead of the conventional Na2CO3/CaCO3, (NH4)2SO4, and K2S2O7 was developed to achieve efficient sequential extraction of rare earth elements (REEs), alumina (Al), and silica (Si) from coal fly ash (CFA). Up to 93.3% Si, 87.1% REEs (70.7% Ce, 82.5% La, 83.2% Gd, 87.1% Nd, 62.3% Dy, and 81.7% Y), and 92.9% Al were extracted from CFA, respectively. Moreover, 93.1% of the ZnO activator was efficiently recycled, and the yield of red mud was only 14.9%. X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) results showed that the speciation transformation of Al/Si during CFA/ZnO roasting was as follows: mullite, quartz, amorphous Al2O3, and SiO2 → Zn0.75Al1.5Si1.5O6, kyanite and willemite → gahnite and quartz/cristobalite solid solutions. The change in the REEs occurrence mode hinted at the migration of most REEs in aluminosilicates forms with Si during roasting, and disassociation with Si into the acid-soluble form after alkali leaching. These results indicate that the coupling of Al-Si-REE in CF was broken by this ZnO sinter method, promoting the sequential and efficient extraction of REEs, Al, and Si from CFA. This study provides a green and efficient strategy for element recovery from CFA, substantially reducing residues and favoring REEs concentration.

5.
Water Res ; 203: 117539, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34407485

ABSTRACT

Red mud (RM) as waste of industrial aluminum production is piling up in huge ponds. RM could be a cost-effective adsorbent for heavy metals, but adsorption is vulnerable to pH changes, metal ions speciation and the occurrence of iron bearing minerals. In this study, the precipitation and elemental speciation transformation relevant to arsenic fate in responding to the addition of RM during arsenopyrite bio-oxidation by Sulfobacillus thermosulfidooxidans was investigated. The results show that the addition of RM significantly changed the arsenic precipitation and the solution chemistry and thus affected the arsenopyrite bio-oxidation and arsenic fate. An addition of a small amount (≤ 4 g/L) of RM substantially promoted arsenopyrite bio-oxidation with formation of SiO2 @ (As, Fe, Al, Si) spherical nanoparticles that can enhance the stability of the immobilized arsenic. The SiO2-based spherical nanoparticles precipitate was mainly composed of jarosites, amorphous ferric arsenate and crystalline scorodite, and its formation were controlled by Fe3+ concentration and solution pH. An addition of increased amount of RM (≥ 6 g/L) resulted in a significant increase of the solution pH and a decrease in the Fe2+ bio-oxidation activity, and spherical nanoparticles were not formed. Consequently, the dissolution of arsenopyrite was inhibited and the release of arsenic was blocked. This study suggests the applicability of RM in mitigation of arsenic pollution from bio-oxidation of As-bearing sulfide minerals.


Subject(s)
Arsenic , Arsenicals , Clostridiales , Hydrogen-Ion Concentration , Iron , Iron Compounds , Minerals , Oxidation-Reduction , Silicon Dioxide , Sulfides
6.
J Hazard Mater ; 384: 121359, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31635821

ABSTRACT

The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites.


Subject(s)
Arsenates/analysis , Arsenicals/chemistry , Arsenites/analysis , Clostridiales/metabolism , Humic Substances/analysis , Iron Compounds/chemistry , Minerals/chemistry , Sulfides/chemistry , Arsenates/metabolism , Arsenicals/metabolism , Arsenites/metabolism , Biodegradation, Environmental , Ferric Compounds/chemistry , Iron Compounds/metabolism , Minerals/metabolism , Models, Theoretical , Oxidation-Reduction , Solubility , Sulfates/chemistry , Sulfides/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...