Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Med Biol ; 23(1): e12596, 2024.
Article in English | MEDLINE | ID: mdl-38983692

ABSTRACT

Purpose: To explore whether spermatozoa from AZFc microdeletion patients affect their outcomes of intracytoplasmic sperm injection (ICSI). Methods: Eighty-five patients with AZFc microdeletion were recruited. A control group of one hundred and forty patients with severe oligozoospermia but without AZF microdeletion was selected using propensity score matching analysis with a 1:2 nearest neighbor algorithm ratio. The ICSI outcomes of the two groups were compared. Results: AZFc microdeletion had lower rates of normal fertilization (73% vs. 80%, p = 0.17) and high-quality embryos (44% vs. 58%, p = 0.07) than the control group. There was no significant difference in the clinical pregnancy rate, miscarriage rate, and live birth rate between the two groups. When the sperm concentration was <1 million/mL, the AZFc microdeletion group exhibited lower rates of fertilization (71% vs. 80%, p = 0.03), high-quality embryo (44% vs. 58%, p = 0.02), clinical pregnancy (57% vs. 76%, p = 0.02), and live birth (49% vs. 72%, p = 0.01) than the control group. However, if sperm concentration was ≥1 million/mL, no significant differences were found. Conclusion: If the sperm concentration is <1 million/mL, AZFc microdeletion do have a detrimental effect on most outcomes of ICSI.

2.
Asian J Androl ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831691

ABSTRACT

ABSTARCT: Necrozoospermia is a poorly documented condition with a low incidence, and its definition and clinical significance are unclear. Herein, we provide a reference range for necrozoospermia and discuss its possible etiology and impact on male fertility and assisted reproductive outcomes. We extracted relevant information from 650 Chinese male partners of infertile couples and statistically analyzed sperm vitality. Necrozoospermia was present in 3.4% (22/650) of our study population, and the lower cut-off value for sperm vitality was 75.3%. We compared two methods for assessing sperm vitality (eosin-nigrosin head staining and hypo-osmotic swelling test [HOST]), for which the percentage in the eosin-nigrosin group (mean ± standard deviation [s.d.]: 77.5% ± 10.5%) was significantly higher than that in the HOST group (mean ± s.d.: 58.1% ± 6.7% [5-10 min after incubation] and 55.6% ± 8.2% [25-30 min after incubation]; both P < 0.001). The incidence of necrozoospermia increased with age (odds ratio [OR] = 1.116, 95% confidence interval [CI]: 1.048-1.189, P = 0.001), while the percentage of normal sperm morphology and DNA fragmentation index (DFI) were significantly associated with necrozoospermia, with ORs of 0.691 (95% CI: 0.511-0.935, P = 0.017) and 1.281 (95% CI: 1.180-1.390, P < 0.001), respectively. In the following 6 months, we recruited 166 patients in the nonnecrozoospermia group and 87 patients in the necrozoospermia group to compare intracytoplasmic sperm injection (ICSI) and pregnancy outcomes between the two groups. The necrozoospermia group had a significantly lower normal fertilization rate (74.7% vs 78.2%, P = 0.041; OR = 0.822; 95% CI: 0.682-0.992) than that in the nonnecrozoospermia group. This study presents substantial information on necrozoospermia to establish comprehensive and applicable reference values for sperm vitality for spontaneous conception and artificially assisted reproductive management.

3.
Biochem Biophys Res Commun ; 678: 90-96, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37619316

ABSTRACT

Tendon injuries, commonly associated with sports activities, pose significant challenges in terms of treatment and recovery due to limited tendon regeneration and the formation of proliferative scars. Stem cell-based therapy has shown promising application, but there are still challenges. Physical and biological cues are instrumental in guiding stem cell differentiation and maturation. This study focuses on exploring the effects of matrix biomechanics on tendon stem/progenitor cells (TSPCs) differentiation. We fabricated polydimethylsiloxane (PDMS) substrates with different elastic modulus to mimic the mechanical characteristics of healthy tendons. A tissue-engineered culture system was developed for tenogenesis, and pre-differentiated tissue-engineered tendons were transplanted in vivo to assess their efficacy in regenerating patella tendon injuries. Furthermore, we demonstrated that the biomechanical stimuli activated the integrin-αm to enhance the tenogenesis capacity of TSPCs. Our findings highlight the importance of biomechanics in tendon tissue engineering and provide a novel perspective for enhancing tendon regeneration.


Subject(s)
Tendon Injuries , Tendons , Humans , CD11b Antigen , Tendon Injuries/therapy , Biomechanical Phenomena , Stem Cells
4.
ACS Biomater Sci Eng ; 5(7): 3511-3522, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-33405734

ABSTRACT

Tendinopathy is a common disease, which is characterized by pain, swelling, and dysfunction. At the late stage of tendinopathy, pathological changes may occur, such as tendon calcification. Previously, we have shown that in situ tendon stem/progenitor cells (TSPCs) underwent osteogenesis in the inflammatory niche in diseased tendons. In this study, we demonstrate that this process is accompanied by the activation of Ras-related C3 botulinum toxin substrate 1 (Rac1) signaling. A specific inhibitor NSC23766 significantly downregulated catabolic factors and calcification-related genes and rescued the tenogenesis gene expression of TSPCs under the influence of Interleukin (IL)-1ß in vitro. For in vivo evaluation, we further developed a drug delivery system to encapsulate Rac1 inhibitor NSC23766. Chitosan/ß-glycerophosphate hydrogel encapsulated NSC23766 effectively impeded tendon calcification and enhanced tendon regeneration in rat Achilles tendinosis. Our findings indicated that inhibiting Rac1 signaling could act as an effective intervention for tendon pathological calcification and promote tendon regeneration, thus providing a new therapeutic strategy.

5.
Biomaterials ; 172: 66-82, 2018 07.
Article in English | MEDLINE | ID: mdl-29723756

ABSTRACT

Tendon stem/progenitor cells (TSPCs) have been identified as a rare population in tendons. In vitro propagation is indispensable to obtain sufficient quantities of TSPCs for therapies. However, culture-expanded TSPCs are prone to lose their phenotype, resulting in an inferior repaired capability. And little is known about the underlying mechanism. Here, we found that altered gene expression was associated with increased histone deacetylase (HDAC) activity and expression of HDAC subtypes. Therefore, we exposed ScxGFP mice-derived TSPCs to HDAC inhibitor (HDACi) trichostatin A (TSA) or valproic acid (VPA), and observed significant expansion of ScxGFP+ cells without altering phenotypic properties. TSA upregulated Scx expression by inhibiting HDAC1 and -3, and increasing the H3K27Ac level of Tgfb1 and -2 genome region. Additionally, cell sheets formed from TSA-pretreated mTSPCs retained the ability to accelerate tendon repair in vivo. Thus, our results uncovered an unrecognized role of HDACi in phenotypic and functional mTSPCs expansion to enhance their therapeutic potential.


Subject(s)
Histone Deacetylase Inhibitors/metabolism , Hydroxamic Acids/metabolism , Stem Cells/metabolism , Tendon Injuries/therapy , Animals , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation/drug effects , Histone Deacetylases/metabolism , Mice , Mice, Transgenic , Rats, Sprague-Dawley , Signal Transduction , Tendons/cytology , Valproic Acid/metabolism
6.
Acta Biomater ; 66: 141-156, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28963019

ABSTRACT

Poor tendon repair is often a clinical challenge due to the lack of ideal biomaterials. Electrospun aligned fibers, resembling the ultrastructure of tendon, have been previously reported to promote tenogenesis. However, the underlying mechanism is unclear and the aligned fibers alone are not capable enough to commit teno-differentiation of stem cells. Here, based on our observation of reduced expression of histone deacetylases (HDACs) in tendon stem/progenitor cells (TSPCs) cultured on aligned fibers, we proposed a strategy to enhance the tenogenesis effect of aligned fibers by using a small molecule Trichostatin A (TSA), an HDAC inhibitor. Such a TSA-laden poly (l-lactic acid) (PLLA) aligned fiber (A-TSA) scaffold was successfully fabricated by a stable jet electrospinning method, and demonstrated its sustained capability in releasing TSA. We found that TSA incorporated aligned fibers of PLLA had an additive effect in directing tenogenic differentiation. Moreover, the in situ implantation study in rat model further confirmed that A-TSA scaffold promoted the structural and mechanical properties of the regenerated Achilles tendon. This study demonstrated that HDAC was involved in the teno-differentiation with aligned fiber topography, and the combination of HDAC with aligned topography might be a more efficient strategy to promote tenogenesis of stem cells. STATEMENT OF SIGNIFICANCE: Electrospun aligned fibers, resembling the ultrastructure of tendon, have been previously reported to promote tenogenesis. However, the underlying mechanism is unclear and the aligned fibers alone are not capable enough to commit teno-differentiation of stem cells. The uniqueness of our studies are as follows, based on our observation of reduced expression of histone deacetylases (HDACs) in tendon stem/progenitor cells (TSPCs) cultured on aligned fibers, we proposed a strategy to enhance the tenogenesis effect of aligned fibers by using a small molecule Trichostatin A (TSA), a HDAC inhibitor. Such a TSA-laden poly (l-lactic acid) (PLLA) aligned fiber (A-TSA) scaffold was successfully fabricated by a stable jet electrospinning method, and demonstrated its sustained capability in releasing TSA. The incorporation and subsequent release of bioactive small molecule TSA into electrospun aligned fibers allows a controllable manner for both biochemical and physical regulation of tenogenesis of stem cells both in vitro and in vivo. Collectively, the present study provides a model of "translating the biological knowledge learned from cell-material interaction into optimizing biomaterials (from Biomat-to-Biomat)".


Subject(s)
Achilles Tendon/physiology , Biocompatible Materials/pharmacology , Epigenesis, Genetic , Nanofibers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Achilles Tendon/cytology , Achilles Tendon/drug effects , Achilles Tendon/ultrastructure , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Epigenesis, Genetic/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Hydroxamic Acids/pharmacology , Mice, Transgenic , Polyesters/chemistry , Rats, Sprague-Dawley , Regeneration/drug effects , Stem Cells/cytology , Stem Cells/drug effects
7.
Stem Cells Transl Med ; 6(11): 2009-2019, 2017 11.
Article in English | MEDLINE | ID: mdl-29024580

ABSTRACT

Stem cells have been widely used in tendon tissue engineering. The lack of refined and controlled differentiation strategy hampers the tendon repair and regeneration. This study aimed to find new effective differentiation factors for stepwise tenogenic differentiation. By microarray screening, the transcript factor Fos was found to be expressed in significantly higher amounts in postnatal Achilles tendon tissue derived from 1 day as compared with 7-days-old rats. It was further confirmed that expression of Fos decreased with time in postnatal rat Achilles tendon, which was accompanied with the decreased expression of multiply tendon markers. The expression of Fos also declined during regular in vitro cell culture, which corresponded to the loss of tendon phenotype. In a cell-sheet and a three-dimensional cell culture model, the expression of Fos was upregulated as compared with in regular cell culture, together with the recovery of tendon phenotype. In addition, significant higher expression of tendon markers was found in Fos-overexpressed tendon stem/progenitor cells (TSPCs), and Fos knock-down gave opposite results. In situ rat tendon repair experiments found more normal tendon-like tissue formed and higher tendon markers expression at 4 weeks postimplantation of Fos-overexpressed TSPCs derived nonscaffold engineering tendon (cell-sheet), as compared with the control group. This study identifies Fos as a new marker and functional driver in the early stage teno-lineage differentiation of tendon, which paves the way for effective stepwise tendon differentiation and future tendon regeneration. Stem Cells Translational Medicine 2017;6:2009-2019.


Subject(s)
Achilles Tendon/cytology , Cell Differentiation , Cell Lineage , Proto-Oncogene Proteins c-fos/genetics , Stem Cells/cytology , Tenocytes/cytology , Achilles Tendon/physiology , Animals , Cells, Cultured , Female , Humans , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Regeneration , Stem Cells/metabolism , Tenocytes/metabolism
8.
Acta Biomater ; 56: 129-140, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28502669

ABSTRACT

Management of ligament/tendon-to-bone-junction healing remains a formidable challenge in the field of orthopedic medicine to date, due to deficient vascularity and multi-tissue transitional structure of the junction. Numerous strategies have been employed to improve ligament-bone junction healing, including delivery of stem cells, bioactive factors, and synthetic materials, but these methods are often inadequate at recapitulating the complex structure-function relationships at native tissue interfaces. Here, we developed an easily-fabricated and effective biomimetic composite to promote the regeneration of ligament-bone junction by physically modifying the tendon extracellular matrix (ECM) into a Random-Aligned-Random composite using ultrasound treatment. The differentiation potential of rabbit bone marrow stromal cells on the modified ECM were examined in vitro. The results demonstrated that the modified ECM enhanced expression of chondrogenesis and osteogenesis-associated epigenetic genes (Jmjd1c, Kdm6b), transcription factor genes (Sox9, Runx2) and extracellular matrix genes (Col2a1, Ocn), resulting in higher osteoinductivity than the untreated tendon ECM in vitro. In the rabbit anterior cruciate ligament (ACL) reconstruction model in vivo, micro-computed tomography (Micro-CT) and histological analysis showed that the modified Random-Aligned-Random composite scaffold enhanced bone and fibrocartilage formation at the interface, more efficaciously than the unmodified tendon ECM. Therefore, these results demonstrated that the biomimetic Random-Aligned-Random composite could be a promising scaffold for ligament/tendon-bone junction repair. STATEMENT OF SIGNIFICANCE: The native transitional region consists of several distinct yet contiguous tissue regions, composed of soft tissue, non-calcified fibrocartilage, calcified fibrocartilage, and bone. A stratified graft whose phases are interconnected with each other is essential for supporting the formation of functionally continuous multi-tissue regions. Various techniques have been attempted to improve adherence of the ligament/tendon graft to bone, including utilization of stem cells, growth factors and biomaterials, but these methods are often inadequate at recapitulating the complex structure-function relationships at native tissue interfaces. Here, we developed an easily-fabricated and effective biomimetic composite to promote the regeneration of ligament-bone junction by physically modifying the tendon extracellular matrix (ECM) into a Random-Aligned-Random composite using ultrasound treatment. The modified ECM enhanced expression of chondrogenesis and osteogenesis-associated epigenetic genes expression in vitro. In the rabbit anterior crucial ligament reconstruction model in vivo, results showed that the modified Random-Aligned-Random composite enhances the bone and fibrocartilage formation in the interface, proving to be more efficient than the unmodified tendon ECM. Therefore, these results demonstrated that the biomimetic Random-Aligned-Random composite could be a promising scaffold for ligament/tendon-bone junction repair.


Subject(s)
Bone Marrow Cells/metabolism , Chondrogenesis , Epigenesis, Genetic , Extracellular Matrix , Stromal Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Bone Marrow Cells/cytology , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Female , Rabbits , Stromal Cells/cytology , Tendons
SELECTION OF CITATIONS
SEARCH DETAIL
...