Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 279: 116479, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38768539

ABSTRACT

The concentration of potentially toxic elements (PTEs) in soils of different land-use types varies depending on climatic conditions and human. Topsoil samples were collected in Northwest China to investigate PTE pollution and risk in different land uses, and thereby estimate the risk of various pollution sources. The results showed that human activity had an impact on PTE concentrations in the study area across all land use types, with farmland, grassland, woodland, and the gobi at moderate pollution levels and the desert at light pollution levels. Different PTE sources pose different risks depending on the land-use type. Apart from deserts, children are exposed to carcinogenic risk from a variety of sources. A mixed natural and agricultural source was the main source of public health risk in the study area, contributing 38.7% and 39.0% of the non-carcinogenic and 40.7% and 35.5% of the carcinogenic risks, respectively. Monte Carlo simulations showed children were at a higher health risk from PTEs than adult s under all land uses, which ranked in severity as farmland > woodland > grassland > gobi > desert. As and Ni has a higher probability of posing both a non-carcinogenic and a carcinogenic risk to children. Sensitivity analysis showed that the contribution of parameters to the assessment model of PTEs exhibited the following contribution pattern: concentration > average body weight > ingestion rate > other parameters. The PTEs affecting the risk assessment model were not common among different land use types, where the importance distribution pattern of each parameter was basically the same in woodland, grassland, and farmland, and Ni contributed the most to carcinogenic risk. However, Cr contributed the most to the carcinogenic risk in the desert and gobi.


Subject(s)
Environmental Monitoring , Monte Carlo Method , Soil Pollutants , Soil , China , Risk Assessment , Soil Pollutants/analysis , Humans , Soil/chemistry , Agriculture , Child , Farms , Desert Climate , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis
2.
Sci Total Environ ; 919: 170878, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38360306

ABSTRACT

Climate changes and human activities have led to a rise of frequency and intensity of the global flash droughts, resulting in severe consequences for ecosystems, agriculture, and human societies. However, research dedicated to flash droughts in the dryland of western China is relatively limited, leaving their evolutionary characteristics and development processes of these phenomena unclear. To bridge this gap, this study analyzed the spatiotemporal characteristics of flash droughts in western China from 1981 to 2020, based on the standardized evapotranspiration stress index. Additionally, we investigated the development mechanisms by taking meteorological conditions and soil moisture into account. The findings revealed that the northern Qinghai-Tibet Plateau, western Qilian Mountains, and western and southern Loess Plateau are hotspots of flash droughts, characterized by rapid development rates. Across most of the study area, flash drought events persisted between 25 and 30 days. Adequate precipitation is necessary before the onset of flash droughts in western China, while water scarcity and high temperatures played crucial roles in driving the mid-stage of flash droughts. Within the context of the observed "warming and wetting" trend, the average flash droughts occurrence from 2011 to 2020 was approximately 16 % lower than that from 1981 to 1990, and there was a significant annual decrease in spatial coverage of 0.01 % per year. However, in the "wetting in west, drying in east" trend, the spatial coverage of flash droughts has shifted from a declining trend to an insignificant increasing trend since 2000 in the study area, with significant regional differences between the western and eastern regions. Over the past decade, flash droughts had once again intensified in the central Qinghai-Tibet Plateau and the Loess Plateau due to warming and fluctuating wetting trends, raising significant concerns for future ecosystem and agricultural water management in these regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...