Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.769
Filter
1.
J Virol ; : e0026824, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775480

ABSTRACT

Enteroviruses are the causative agents associated with several human and animal diseases, posing a significant threat to human and animal health. As one of the host immune defense strategies, innate immunity plays a crucial role in defending against invading pathogens, where the host utilizes a variety of mechanisms to inhibit or eliminate the pathogen. Here, we report a new strategy for the host to repress enterovirus replication by the 78 kDa glucose-regulated protein (GRP78), also known as heat shock protein family A member 5 (HSPA5). The GRP78 recognizes the EV-encoded RNA-dependent RNA polymerases (RdRPs) 3D protein and interacts with the nuclear factor kappa B kinase complex (CHUK) and subunit beta gene (IKBKB) to facilitate the phosphorylation and nuclear translocation of NF-κB, which induces the production of inflammatory factors and leads to a broad inhibition of enterovirus replication. These findings demonstrate a new role of GRP78 in regulating host innate immunity in response to viral infection and provide new insights into the mechanism underlying enterovirus replication and NF-κB activation.IMPORTANCEGRP78 is known as a molecular chaperone for protein folding and plays a critical role in maintaining protein folding and participating in cell proliferation, cell survival, apoptosis, and metabolism. However, the functions of GRP78 to participate in enterovirus genome replication and innate immune responses are rarely documented. In this study, we explored the functions of the EV-3D-interacting protein GRP78 and found that GRP78 inhibits enterovirus replication by activating NF-κB through binding to EV-F 3D and interacting with the NF-κB signaling molecules CHUK/IKBKB. This is the first report that GRP78 interacts with CHUK/IKBKB to activate the NF-κB signaling pathway, which leads to the expression of the proinflammatory cytokines and inhibition of enterovirus replication. These results demonstrate a unique mechanism of virus replication regulation by GRP78 and provide insights into the prevention and treatment of viral infections.

2.
Quant Imaging Med Surg ; 14(5): 3312-3325, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720832

ABSTRACT

Background: The importance of right heart assessment in dilated cardiomyopathy (DCM) is increasingly recognized. The development of cardiovascular magnetic resonance-feature tracking (CMR-FT) has provided a novel approach to quantify myocardial deformation and evaluate cardiac function. In this study, we aimed to evaluate the feasibility and reproducibility of CMR-FT for the quantitative derivation of right atrial (RA) strain and strain rate (SR) in patients with DCM. Methods: A total of 68 DCM patients (84% male; aged 50.6±13.2 years) and 58 healthy controls (81% male; aged 48.4±11.2 years) were retrospectively enrolled from September 2018 to August 2022 at the First Affiliated Hospital of Zhejiang Chinese Medical University and Shenzhen Clinical Medical College of Guangzhou University of Chinese Medicine. RA reservoir, conduit, and booster strain (εs, εe, and εa) and peak positive, peak early negative, and peak late negative SR (SRs, SRe, and SRa) were measured using CMR-FT and compared between 2 groups using Student's t-test. Intra- and inter-observer reproducibility was evaluated using intraclass correlation coefficients (ICC) and Bland-Altman plots. Results: Compared to healthy controls, DCM patients showed significantly lower RA strain (εs: 19.7%±9.0% vs. 44.4%±9.7%; εe: 7.9%±5.3% vs. 25.8%±8.6%; εa: 11.8%±6.2% vs. 18.6%±5.1%, all P<0.001) and SR (SRs: 1.17±0.48 vs. 1.92±0.62 s-1; SRe: -0.85±0.56 vs. -1.94±0.63 s-1; SRa: -1.39±0.71 vs. -2.01±0.65 s-1, all P<0.001). There was no significant difference in RA maximum volume index between the 2 groups. Simple linear regression analysis demonstrated a significant correlation between N-terminal B-type natriuretic peptide (NT-proBNP), RA emptying fraction passive (RAEF passive), and RA εe [(NT-proBNP and εe): r=-0.48, P<0.001, 95% confidence interval (CI): -0.64 to -0.26; and (RAEF passive and εe): r=0.41, P=0.001, 95% CI: 0.22 to 0.56, respectively] in DCM patients. Intra- and inter-observer reproducibility was excellent (all ICCs >0.85) for RA deformation measurements. Conclusions: CMR-FT is a promising, noninvasive approach for the quantitative assessment of RA phasic function in patients with DCM. DCM patients exhibit impaired RA reservoir, conduit, and booster pump function prior to visible RA enlargement.

3.
Science ; 384(6696): 647-651, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723084

ABSTRACT

The quantum anomalous Hall effect (QAHE) is a robust topological phenomenon that features quantized Hall resistance at zero magnetic field. We report the QAHE in a rhombohedral pentalayer graphene-monolayer tungsten disulfide (WS2) heterostructure. Distinct from other experimentally confirmed QAHE systems, this system has neither magnetic element nor moiré superlattice effect. The QAH states emerge at charge neutrality and feature Chern numbers C = ±5 at temperatures of up to about 1.5 kelvin. This large QAHE arises from the synergy of the electron correlation in intrinsic flat bands of pentalayer graphene, the gate-tuning effect, and the proximity-induced Ising spin-orbit coupling. Our experiment demonstrates the potential of crystalline two-dimensional materials for intertwined electron correlation and band topology physics and may enable a route for engineering chiral Majorana edge states.

4.
Article in English | MEDLINE | ID: mdl-38751671

ABSTRACT

Background and Objective: Cancer immunotherapy has significantly advanced the field of oncology, providing novel therapeutic strategies for various malignancies, including breast cancer. The programmed cell death protein 1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway is pivotal in immune regulation, and its inhibitors have demonstrated therapeutic benefits in diverse tumors. This review aims to critically examine the role, clinical efficacy, safety, and future directions of PD-1/PD-L1 inhibitors in breast cancer treatment, with a focus on pembrolizumab, nivolumab, and tislelizumab, and to elucidate the challenges and prospects in this dynamic field. Methods: A comprehensive literature search was conducted, adhering to Narrative Review reporting checklist for transparent reporting. Data from selected studies were qualitatively analyzed to synthesize key findings related to the mechanisms of action, clinical applications, and challenges of PD-1/PD-L1 inhibitors in breast cancer. Key Content and Findings: PD-1 inhibitors have shown remarkable efficacy in various malignancies, including advanced triple-negative breast cancer (TNBC), where they have been investigated both in combination with chemotherapy and as neoadjuvant/adjuvant treatment. The exploration of these inhibitors in other breast cancer subtypes, such as human epidermal growth factor receptor-positive and hormone receptor-positive breast cancer, is ongoing. The review highlights the challenges in patient selection, management of immune-related adverse events (irAEs), and the emergence of resistance mechanisms. It underscores the need for ongoing research focusing on identifying reliable predictive biomarkers, elucidating mechanisms of resistance, and optimizing treatment strategies. Conclusions: PD-1/PD-L1 inhibitors hold substantial promise in advancing breast cancer treatment. This review provides critical insights and emphasizes the clinical importance of continued scientific exploration to refine patient selection criteria, improve treatment outcomes, and expand the applications of immunotherapy in breast cancer. Further research is imperative to overcome the existing challenges and realize the full therapeutic potential of these inhibitors in breast cancer and other malignancies.

5.
Article in English | MEDLINE | ID: mdl-38754749

ABSTRACT

OBJECTIVE: The mechanism of left ventricular outflow tract obstruction (LVOTO) is complex in hypertrophic cardiomyopathy (HCM). We aimed to evaluate the impact of mitral valve geometry on LVOTO by echocardiography. MATERIALS AND METHODS: The study population comprised 177 consecutive patients with HCM. Morphological findings of left ventricular hypertrophy and LVOTO-related abnormalities were assessed by comprehensive transthoracic echocardiography. Aorto-mitral angle, mitral leaflet length, and coaptation height were measured and analyzed at rest. Multivariable stepwise forward logistic regression analysis was performed to identify geometric predictors of LVOTO. RESULTS: One hundred and thirty-seven patients had an LVOT gradient ≥ 30 mmHg. Multivariable logistic regression showed that aorto-mitral angle (OR 0.89, 95%CI 0.83-0.95, P<0.001), coaptation height (OR 1.96, 95%CI 1.41-2.72, P<0.001), and accessory mitral valve chordae tendineae (OR 13.1, 95%CI 4.32-39.95, P<0.001), were independently associated with LVOTO. ROC analysis showed that the area under the curve (AUC) of mitral coaptation height was higher (AUC=0.815) than the other two indicators (P<0.05). CONCLUSIONS: Mitral coaptation height, aorto-mitral angle, and accessory mitral valve chordae tendineae, were important predictors of SAM and LVOTO in HCM independent of septal hypertrophy.

6.
Plants (Basel) ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732451

ABSTRACT

DREB has been reported to be involved in plant growth and response to environmental factors. However, the function of DREB in growth and development has not been elucidated in alfalfa (Medicago sativa L.), a perennial tetraploid forage cultivated worldwide. In this study, an ortholog of MtDREB1C was characterized from alfalfa and named MsDREB1C accordingly. MsDREB1C was significantly induced by abiotic stress. The transcription factor MsDREB1C resided in the nucleus and had self-transactivation activity. The MsDREB1C overexpression (OE) alfalfa displayed growth retardation under both long-day and short-day conditions, which was supported by decreased MsGA20ox and upregulated MsGA2ox in the OE lines. Consistently, a decrease in active gibberellin (GA) was detected, suggesting a negative effect of MsDREB1C on GA accumulation in alfalfa. Interestingly, the forage quality of the OE lines was better than that of WT lines, with higher crude protein and lower lignin content, which was supported by an increase in the leaf-stem ratio (LSR) and repression of several lignin-synthesis genes (MsNST, MsPAL1, MsC4H, and Ms4CL). Therefore, this study revealed the effects of MsDREB1C overexpression on growth and forage quality via modifying GA accumulation and lignin synthesis, respectively. Our findings provide a valuable candidate for improving the critical agronomic traits of alfalfa, such as overwintering and feeding value of the forage.

7.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38739424

ABSTRACT

Multidimensional microdriving stage is one of the key components to realize precision driving and high-precision positioning. To meet nanometer displacement and positioning in the fields of micro-/nano-machining and precision testing, a new six-degree-of-freedom microdriving stage (6-DOF-MDS) of multilayer spatially distributed piezoelectric ceramic actuators (PZTs) is proposed and designed. The interior of the 6-DOF-MDS is a hollow design. The flexure hinge is used as the transmission mechanism, and the series-parallel hybrid driving of the corresponding PZTs achieves the microtranslation in the X, Y, and Z directions and the microrotation around the three axes of the microdriving stage, forming a microdisplacement mechanism with high rigidity and simple structure, which can realize the microfeed of 6-DOF. The force-displacement theory and lug boss structure optimization of the 6-DOF-MDS are analyzed, while the strength checking and natural frequency of the 6-DOF-MDS are also simulated by the finite element method. In addition, the real-time motion control system of the 6-DOF-MDS is designed based on Advanced RISC Machines. Through a series of verification experiments, the stroke and resolution results of the 6-DOF-MDS are obtained, where the displacements in the X, Y, and Z directions are 20.72, 20.02, and 37.60 µm, respectively. The resolution is better than 0.68 nm. The rotation angles around X, Y, and Z are 38.96″, 33.80″, and 27.87″, respectively, with an angular resolution of 0.063″. Relevant coupling experiments were also performed in this paper; in the full stroke linear running of X-axis, the maximum coupling displacements of the Y- and Z-axes are 1.04 and 0.17 µm, respectively, with the corresponding coupling rates of ∼5.0% and 0.8%. The maximum coupling angles for the X-, Y-, and Z-axes are 0.33″, 0.14″, and 2.30″, respectively. Considering the coupling of the 6-DOF-MDS, decoupling measures and specific mathematical models have also been proposed. The proposed multidimensional microdriving stage achieves subnanometer resolution and can be used for the precise positioning and attitude control of precision instruments at the nano-/subnanometer level.

8.
Food Chem X ; 22: 101412, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38707779

ABSTRACT

Identifying the geographic origin of a wine is of great importance, as origin fakery is commonplace in the wine industry. This study analyzed the mineral elements, volatile components, and metabolites in wine using inductively coupled plasma-mass spectrometry, headspace solid phase microextraction gas chromatography-mass spectrometry, and ultra-high-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry. The most critical variables (5 mineral elements, 13 volatile components, and 51 metabolites) for wine origin classification were selected via principal component analysis and orthogonal partial least squares discriminant analysis. Subsequently, three algorithms-K-nearest neighbors, support vector machine, and random forest -were used to model single and fused datasets for origin identification. These results indicated that fused datasets, based on feature variables (mineral elements, volatile components, and metabolites), achieved the best performance, with predictive rates of 100% for all three algorithms. This study demonstrates the effectiveness of a multi-source data fusion strategy for authenticity identification of Chinese wine.

10.
Nat Commun ; 15(1): 3773, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710738

ABSTRACT

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive chorioretinal degenerative disease without approved therapeutic drugs. It is caused by mutations in CYP4V2 gene, and about 80% of BCD patients carry mutations in exon 7 to 11. Here, we apply CRISPR/Cas9 mediated homology-independent targeted integration (HITI)-based gene editing therapy in HEK293T cells, BCD patient derived iPSCs, and humanized Cyp4v3 mouse model (h-Cyp4v3mut/mut) using two rAAV2/8 vectors via sub-retinal administration. We find that sgRNA-guided Cas9 generates double-strand cleavage on intron 6 of the CYP4V2 gene, and the HITI donor inserts the carried sequence, part of intron 6, exon 7-11, and a stop codon into the DNA break, achieving precise integration, effective transcription and translation both in vitro and in vivo. HITI-based editing restores the viability of iPSC-RPE cells from BCD patient, improves the morphology, number and metabolism of RPE and photoreceptors in h-Cyp4v3mut/mut mice. These results suggest that HITI-based editing could be a promising therapeutic strategy for those BCD patients carrying mutations in exon 7 to 11, and one injection will achieve lifelong effectiveness.


Subject(s)
CRISPR-Cas Systems , Corneal Dystrophies, Hereditary , Cytochrome P450 Family 4 , Gene Editing , Genetic Therapy , Induced Pluripotent Stem Cells , Retinal Diseases , Humans , Gene Editing/methods , Animals , HEK293 Cells , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/therapy , Corneal Dystrophies, Hereditary/pathology , Corneal Dystrophies, Hereditary/metabolism , Mice , Induced Pluripotent Stem Cells/metabolism , Genetic Therapy/methods , Cytochrome P450 Family 4/genetics , Cytochrome P450 Family 4/metabolism , Disease Models, Animal , Mutation , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Genetic Vectors/genetics , Introns/genetics , Exons/genetics
11.
Transl Oncol ; 45: 101969, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38692196

ABSTRACT

BACKGROUND: Exosomes, one of small extracellular vesicles, play a vital role in cell to cell communication and contribute to the advancement of tumors through their cargo molecules. Exosomal circRNAs have emerged as significant players in various types of tumors. Thus, this study aimed to investigate how exosomal circRNAs are involved in the diagnosis and progression of gastric cancer (GC). METHODS: Serum exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis and Western blot. CCK-8, colony formation and transwell assays were conducted to study the function of hsa_circ_0050547 (named as circ50547). qRT-PCR was used to quantify the expression of circ50547 in GC tissues and serum exosomes. Fluorescence in situ hybridization was applied to detect the cellular distribution of circ50547. Stemness and drug-resistance were detected by sphere formation, WB, flow cytometry and half-maximal inhibitory concentration analyses. Bioinformatic analyses, luciferase experiments, qRT-PCR and WB were used to investigate molecular mechanisms. RESULTS: We discovered for the first time a new type of GC-derived exosomal circRNA, circ50547. We found that circ50547 is highly expressed in both GC tissues and serum exosomes. Interestingly, we observed that the diagnostic value of exosomal circ50547 is superior to that of serum circ50547. Circ50547 overexpression enhanced the proliferation, migration, invasion, stemness and drug resistance of GC cells, while knockdown of circ50547 showed the opposite effect. Mechanistically, circ50547 acted as a sponge for miR-217 to regulate the expression of HNF1B, which promoted gastric cancer progression. CONCLUSION: Exosomal circ50547 may be a promising marker for the diagnosis and prognosis prediction of GC. These findings suggest that it plays an oncogenic role through miR-217/HNF1B signaling pathway in GC.

12.
iScience ; 27(5): 109766, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38711448

ABSTRACT

Swift and accurate diagnosis for earlier-stage monkeypox (mpox) patients is crucial to avoiding its spread. However, the similarities between common skin disorders and mpox and the need for professional diagnosis unavoidably impaired the diagnosis of earlier-stage mpox patients and contributed to mpox outbreak. To address the challenge, we proposed "Super Monitoring", a real-time visualization technique employing artificial intelligence (AI) and Internet technology to diagnose earlier-stage mpox cheaply, conveniently, and quickly. Concretely, AI-mediated "Super Monitoring" (mpox-AISM) integrates deep learning models, data augmentation, self-supervised learning, and cloud services. According to publicly accessible datasets, mpox-AISM's Precision, Recall, Specificity, and F1-score in diagnosing mpox reach 99.3%, 94.1%, 99.9%, and 96.6%, respectively, and it achieves 94.51% accuracy in diagnosing mpox, six like-mpox skin disorders, and normal skin. With the Internet and communication terminal, mpox-AISM has the potential to perform real-time and accurate diagnosis for earlier-stage mpox in real-world scenarios, thereby preventing mpox outbreak.

13.
Adv Mater ; : e2314197, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713519

ABSTRACT

Combining radiotherapy with immune checkpoint blockade therapy offers a promising approach to treat glioblastoma multiforme (GBM), yet challenges such as limited effectiveness and immune-related adverse events (irAEs) persist. These issues are largely due to the failure in targeting immunomodulators directly to the tumor microenvironment. To address this, we developed a biomimetic nanoplatform that combines a genetically modified mesenchymal stem cell (MSC) membrane with a bioactive nanoparticle core for chemokine-directed radioimmunotherapy of GBM. The CCR2-overexpressing MSC membrane acts as a tactical tentacle to achieve radiation-induced tropism toward the abundant chemokine ligand CCL2 in irradiated gliomas. The nanoparticle core, comprising diselenide-bridged mesoporous silica nanoparticles (MSNs) and PD-L1 antibodies (αPD-L1), enables X-ray-responsive drug release and radiosensitization. In two murine models with orthotopic GBM tumors, this nanoplatform reinvigorated immunogenic cell death, and augmented the efficacy and specificity of GBM radioimmunotherapy, with reduced occurrence of irAEs. This study suggests a promising radiation-induced tropism strategy for targeted drug delivery, and presents a potent nanoplatform that enhances the efficacy and safety of radio-immunotherapy. This article is protected by copyright. All rights reserved.

14.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727341

ABSTRACT

The rough morphology at the growth surface results in the non-uniform distribution of indium composition, intentionally or unintentionally doped impurity, and thus impacts the performance of GaN-based optoelectronic and vertical power electronic devices. We observed the morphologies of unintentionally doped GaN homo-epitaxially grown via MOCVD and identified the relations between rough surfaces and the miscut angle and direction of the substrate. The growth kinetics under the effect of the Ehrlich-Schwoebel barrier were studied, and it was found that asymmetric step motions in samples with a large miscut angle or those grown at high temperature were the causes of step-bunching. Meandering steps were believed to be caused by surface free energy minimization for steps with wide terraces or deviating from the [11¯00] m-direction.

15.
Small ; : e2311079, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733224

ABSTRACT

Ternary topological insulators have attracted worldwide attention because of their broad application prospects in fields such as magnetism, optics, electronics, and quantum computing. However, their potential and electrochemical mechanisms in sodium ion batteries (SIBs) and hybrid capacitors (SIHCs) have not been fully studied. Herein, a composite material comprising vacancy-defects ternary topological insulator Bi2Se2Te encapsulated in mesoporous carbon spheres (Bi2Se2Te@C) is designed. Bi2Se2Te with ample vacancy-defects has a wide interlayer spacing to enable frequent insertion/extraction of Na+ and boost reaction kinetics within the electrode. Meanwhile, the Bi2Se2Te@C with optimized yolk-shell structure can buffer the volume variation without breaking the outer protective carbon shell, ensuring structural stability and integrity. As expected, the Bi2Se2Te@C electrode delivers high reversible capacity and excellent rate capability in half SIB cells. Various electrochemical analyses and theoretical calculations manifest that Bi2Se2Te@C anode confirms the synergistic effect of ternary chalcogenide systems and suitable void space yolk-shell structure. Consequently, the full cells of SIB and SIHC coupled with Bi2Se2Te@C anode exhibit good performance and high energy/power density, indicating its widespread practical applications. This design is expected to offer a reliable strategy for further exploring advanced topological insulators in Na+-based storage systems.

17.
Neurooncol Adv ; 6(1): vdae033, 2024.
Article in English | MEDLINE | ID: mdl-38725995

ABSTRACT

Background: POLARIS (phase 2 [ph2]; NCT03911869) evaluated encorafenib (BRAF inhibitor) in combination with binimetinib (MEK1/2 inhibitor) in BRAF/MEK inhibitor-naïve patients with BRAF V600-mutant melanoma with asymptomatic brain metastases. Methods: The safety lead-in (SLI) assessed tolerability for high-dose encorafenib 300 mg twice daily (BID) plus binimetinib 45 mg BID. If the high dose was tolerable in ph2, patients would be randomized to receive high or standard dose (encorafenib 450 mg once daily [QD] plus binimetinib 45 mg BID). Otherwise, standard dose was evaluated as the recommended ph2 dose (RP2D). Patients who tolerated standard dosing during Cycle 1 could be dose escalated to encorafenib 600 mg QD plus binimetinib 45 mg BID in Cycle 2. Safety, efficacy, and pharmacokinetics were examined. Results: RP2D was standard encorafenib dosing, as >33% of evaluable SLI patients (3/9) had dose-limiting toxicities. Overall, of 13 safety-evaluable patients (10 SLI, 3 ph2), 9 had prior immunotherapy. There were 9 treatment-related adverse events in the SLI and 3 in ph2. Of the SLI efficacy-evaluable patients (n = 10), 1 achieved complete response and 5 achieved partial responses (PR); the brain metastasis response rate (BMRR) was 60% (95% CI: 26.2, 87.8). In ph2, 2 of 3 patients achieved PR (BMRR, 67% [95% CI: 9.4, 99.2]). Repeated encorafenib 300 mg BID dosing did not increase steady-state exposure compared with historical 450 mg QD data. Conclusions: Despite small patient numbers due to early trial termination, BMRR appeared similar between the SLI and ph2, and the ph2 safety profile appeared consistent with previous reports of standard-dose encorafenib in combination with binimetinib.

18.
Ecotoxicol Environ Saf ; 278: 116439, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38728945

ABSTRACT

Nanoplastic contamination has been of intense concern by virtue of the potential threat to human and ecosystem health. Animal experiments have indicated that exposure to nanoplastics (NPs) can deposit in the liver and contribute to hepatic injury. To explore the mechanisms of hepatotoxicity induced by polystyrene-NPs (PS-NPs), mice and AML-12 hepatocytes were exposed to different dosages of 20 nm PS-NPs in this study. The results illustrated that in vitro and in vivo exposure to PS-NPs triggered excessive production of reactive oxygen species and repressed nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway and its downstream antioxidase expression, thus leading to hepatic oxidative stress. Moreover, PS-NPs elevated the levels of NLRP3, IL-1ß and caspase-1 expression, along with an activation of NF-κB, suggesting that PS-NPs induced hepatocellular inflammatory injury. Nevertheless, the activaton of NRF2 signaling by tert-butylhydroquinone mitigated PS-NPs-caused oxidative stress and inflammation, and inbihited NLRP3 and caspase-1 expression. Conversely, the rescuing effect of NRF2 signal activation was dramatically supressed by treatment with NRF2 inhibitor brusatol. In summary, our results demonstrated that NRF2-NLRP3 pathway is involved in PS-NPs-aroused hepatotoxicity, and the activation of NRF2 signaling can protect against PS-NPs-evoked liver injury. These results provide novel insights into the hepatotoxicity elicited by NPs exposure.

19.
iScience ; 27(5): 109786, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706852

ABSTRACT

[This corrects the article DOI: 10.1016/j.isci.2024.109057.].

20.
Curr Opin Chem Biol ; 80: 102469, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776764

ABSTRACT

In vivo luminescence imaging in the second near-infrared window (NIR-II, 1000-2000 nm) is a potent technique for observing deep-tissue life activities, leveraging reduced light scattering, minimized autofluorescence, and moderate absorption attenuation to substantially enhance image contrast. Pushing the frontiers of NIR-II luminescence imaging forward, moving from static to dynamic event visualization, monochromatic to multicolor images, and fundamental research to clinical applications, necessitates the development of novel luminophores featuring bright emission, extendable wavelength, and optimal biocompatibility. Recently, lanthanide-dye hybrid luminophores (LDHLs) are gaining increasing attention for their wavelength extensibility, molecular size, narrowband emission, mega stokes shift, long lifetime, and high photostability. In this review, we will summarize the recent advances of NIR-II LDHLs and their applications in imaging and analysis of living mammals, and discuss future challenges in designing new LDHLs for deep-tissue imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...