Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Nat Commun ; 15(1): 5448, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937444

ABSTRACT

Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.


Subject(s)
Actin Cytoskeleton , Actomyosin , Kinesins , Microtubules , Pollen , Microtubules/metabolism , Actin Cytoskeleton/metabolism , Kinesins/metabolism , Pollen/metabolism , Actomyosin/metabolism , Pollen Tube/metabolism , Pollen Tube/growth & development , Cell Nucleus/metabolism , Arabidopsis/metabolism , Cytoplasmic Streaming , Germination/physiology
2.
Front Microbiol ; 15: 1303915, 2024.
Article in English | MEDLINE | ID: mdl-38572229

ABSTRACT

Large-scale outbreaks of virus-associated severe diarrhea have occurred in pig populations since 2010. To investigate the prevalence and genetic evolution of the diarrhea-associated viruses responsible for the outbreaks, we tested 1,791 diarrhea samples collected from 213 pig farms in five provinces in southern China between 2021 and 2023. The test results showed that porcine epidemic diarrhea virus (PEDV) was the most frequently detected virus. The prevalence rates ranged from 47.40 to 52.22% in samples and 76.06% (162/213) in pig farms. Porcine rotavirus (PoRV) was the second common virus, with prevalence rates ranging from 25.81 to 50.81% in samples and 72.77%(155/213) in pig farms. Porcine delta coronavirus (PDCoV) was the third common virus, with prevalence rates ranging from 16.33 to 17.48% in samples and 38.50% (82/213) in pig farms. The detection rates of both transmissible gastroenteritis virus (TGEV) and porcine acute diarrheal syndrome coronavirus (SADS-CoV) were very low, less than 1.01% in samples and less than 3.76% in pig farms. In this study, we found SADS-CoV only in piglet diarrhea samples from Jiangxi, Guangdong, and Guangxi provinces in China, with a prevalence rate of 5.16% (11/213) in pig farms. Co-infection with these diarrhea-associated viruses is a common occurrence. The most common co-infections were PEDV and PoRV, with a prevalence rate of 6.64% (119/1,791), followed by PDCoV and PoRV, with a prevalence rate of 4.19% (75/1,791). Phylogenetic analyses showed that PEDV and PEDV variants prevalent in southern China during the past three years clustered into genotype GIIb and recombinant PEDV subtypes. Among the currently endemic PEDV, the most common mutations occurred in the collagenase equivalent (COE) and epitope regions of the spike gene. PoRV strains were mainly dominated by the G9 subtype, followed by the G5, G3 and G4 subtypes. Our results suggest that variant PEDV, PDCoV and PoRV are the main pathogens of swine diarrhea, and singular- or co-infection with pathogenic enteric CoV is common in pig herds in southern China. Therefore, prevention and control of porcine viral diarrhea should be given high attention.

3.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 419-433, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38369830

ABSTRACT

Coronaviruses pose significant threats to animal and human health, leading to the development of various infectious diseases. It is critical to develop effective vaccines and antiviral medicines to prevent and treat these diseases. The coronavirus genome encodes several types of proteins, including structural, nonstructural, and accessory proteins. Among them, nonstructural protein 13 (NSP13) helicase plays a crucial role in regulating viral replication and the innate immune response of the host. Therefore, it serves as a vital target for the development of anti-coronavirus drugs. This paper presents a comprehensive review of NSP13 research, covering its source, structure, sequence conservation, unwinding mechanism, enzyme inhibitors, protein interaction, and immune regulation. Additionally, the paper analyzes the current challenges in NSP13 research and aims to provide a theoretical foundation for the development of broad-spectrum antiviral drugs targeting NSP13.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Humans , DNA Helicases/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication , RNA Helicases/genetics , RNA Helicases/metabolism
4.
Life (Basel) ; 14(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398744

ABSTRACT

This study aimed to investigate the morphological characteristics of fruits and seeds from Diptychocarpus strictus, a plant species inhabiting the cold desert pastoral area of China. Furthermore, this study sought to evaluate the germination potential of these seeds following digestion by sheep. This study employed the sheep rumen fistula method to simulate rumen digestion at various time intervals. Subsequently, an in vitro simulation method was utilized to simulate true gastric and intestinal digestion after rumen digestion. Paper germination tests were then conducted to assess the impact of the digestive process on the heteromorphic seed morphology and germination. During rumen digestion, the seeds were protected by wide wings. The results revealed a highly significant negative correlation (p < 0.01) between seed wing length and digestion time. Post-rumen digestion, variations in the germination rate among seeds from fruits at different locations were observed. Indicators, such as germination rate, exhibited a highly significant negative correlation with rumen digestion time (p < 0.01). In vitro simulated digestion tests demonstrated that Diptychocarpus strictus seeds retained their ability to germinate even after complete digestion within the livestock's digestive tract. The polymorphic nature of Diptychocarpus strictus seeds, coupled with their capacity to survive and germinate through the digestive tract, facilitates the spread of these seeds. This finding has implications for mitigating desert grassland degradation and promoting sustainable ecological development.

5.
Front Microbiol ; 15: 1341201, 2024.
Article in English | MEDLINE | ID: mdl-38389530

ABSTRACT

Avian leukosis virus subgroup K (ALV-K) is a new subgroup of avian leukosis virus (ALV) that was first identified in Chinese native chickens in recent years. To further understand the molecular epidemiology and evolutionary diversity of ALV-K, this study investigated the molecular epidemiology of 73,664 chicken plasma samples collected from Jiangxi native chicken flocks. The results showed that ALV-J was the most predominant ALV subtype in Jiangxi native chickens, with a high positivity rate of 4.34%. From 2021 to 2023, there was a gradual upward trend in the proportion of positive numbers of ALV-K among ALV-positive samples, and there was a trend of outbreaks. ALV-J and ALV-K were the main co-infection patterns. Genetic evolutionary analysis based on ALV-K gp85 gene showed that the isolated ALV-K in this study were distributed in various branches of the evolutionary tree with genetic diversity. The homology results showed that the amino acid homology of the isolated ALV-K gp85 gene ranged from 33.9 to 88.1% with the reference strains of subtypes A, B, C, D, E, and J, and from 91.9 to 100% with the other ALV-K reference strains. Multiple mutations were present in the ALV-K gp85, and especially significant mutations were found in the highly variable region hr2. The results of ALV-K replication efficiency showed that the replication efficiency of ALV-K was significantly lower than that of ALV-J. These results enriched the genome sequence data of ALV-K in Chinese geoducks, and laid the foundation for further research on the pathogenesis and prevention of ALV-K.

6.
Poult Sci ; 103(3): 103397, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295496

ABSTRACT

Since 2011, the Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2) strain has extensively been detected worldwide. However, because there are no up-to-date reports of examining the distribution of GyVg1 in flocks in southern China, the epidemiology of this virus is unknown. To investigate the prevalence and genetic evolution of GyVg1, a total of 2,077 field samples collected from 113 chicken farms in 6 provinces in southern China during 2020 to 2022 were tested. Among them, 315 samples (315/2,077, 15.17%) were positive for GyVg1 by PCR. The positive rate of GyVg1 detection between different regions of southern China ranged from 11.69% (Guangdong) to 22.46% (Yunnan). The correlation between GyVg1 prevalence and sample source groups was analyzed, the results showing that the highest seroprevalence of GyVg1 was observed in visceral tissues (27.34%, 187/684), significantly higher (P < 0.05) than that of feather shafts (17.22%, 31/180), serums (8.85%, 78/881), and fecal (5.72%, 19/332). Additionally, the complete genomes of 10 GyVg1 strains were sequenced and analyzed, which showed nucleotide identities of 96.2 to 99.9%, 97.0 to 100.0%, 95.2 to 100.0%, and 95.7 to 99.8% in the complete genome, ORF1, ORF2, and ORF3, respectively, and 94.4 to 100.0%, 91.3 to 100.0%, and 98.7 to 100.0% amino acid similarity in the VP2, VP3, and VP1 proteins, respectively. Phylogenetic analysis of the whole genome showed that 10 GyVg1 strains belong to genotype I, and one strain belongs to genotype III. Sequence analysis showed several amino acid substitutions in both the VP1, VP2, and VP3 proteins. Our results enhance the understanding of the molecular characterization of GyVg1 infection in southern China. In conclusion, this study reveals the high prevalence and high genetic differentiation of GyVg1 in Chinese chickens and suggests that the potential impact of GyVg1 on the chicken industry may be of concern.


Subject(s)
Gyrovirus , Animals , Gyrovirus/genetics , Phylogeny , Prevalence , Seroepidemiologic Studies , Sequence Analysis, DNA/veterinary , Chickens/genetics , China/epidemiology
7.
Poult Sci ; 103(2): 103264, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035474

ABSTRACT

In recent years, the infection rate of avian encephalomyelitis virus (AEV) infection in chickens has risen significantly, seriously endangering the development of the chicken industry. In order to study the current epidemiological status of AEV in China as well as the genetic and evolutionary patterns of the virus, we conducted a survey and genomic analysis of chicken AEV. The results showed that 46.26% (136/294) of the tissue samples tested (n = 294) were positive for AEV, with the highest positivity rate of 62.24% (61/98) among tissue samples from chickens aged 13 to 18 wk. The complete genomes of 2 representative AEV strains were determined, and the VP1 evolutionary tree results revealed that the 2 representative strains belonged to a novel AEV strain. Multiple alignment analysis showed that the ORF1 genes of the 2 representative strains differed by 82.3 to 99.9% at the amino acid level compared with the reference AEV strain, and the mutations at the key amino acid loci of VP2 and VP3 were the same as those in the chick embryo-adapted strain. The analysis makes up for the molecular epidemiological data and genetic variation of the 2 representative strains. The analysis makes up for the molecular epidemiological data and genetic variation of AEV and provides a basis for further understanding the spread of AEV in China.


Subject(s)
Encephalomyelitis Virus, Avian , Poultry Diseases , Chick Embryo , Animals , Chickens , Encephalomyelitis Virus, Avian/genetics , Mutation , Amino Acids , China/epidemiology , Poultry Diseases/epidemiology
8.
Environ Technol ; : 1-14, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37970958

ABSTRACT

ABSTRACTIt is unknown how antibiotics would behave after entering the hyporheic zone (HZ), which is an area where groundwater and surface water alternate continuously. In this study, the hydrolysis process in the HZ was investigated based on the intermediates identified by HPLC-Q-TOF-MS and FTIR, and the active sites of sulfamethoxazole (SMX) were predicted by density functional theory (DFT). The results showed that the hydrolysis rate of SMX during surface water recharged groundwater reached 38.94%, and the contribution rate of hydroxyl radicals reached 48.35%. In neutral and alkaline environments, SMX hydrolysed more quickly. This is due to the fact that ·OH, as the main precursor of OH-, is much higher in quantity under alkaline conditions. Inorganic anions such as NO3-, HCO3- and CO32- may inhibit the hydrolysis of SMX by eliminating the reactive oxygen species generated in the HZ. In the process of groundwater recharging to surface water, the concentration of dissolved oxygen (DO) and the rate of SMX hydrolysis gradually reduced. Nitrification, hydroxylation and polymerisation are the main hydrolysis pathways of SMX. The hydrolysis products of SMX in the HZ are more plentiful and have a higher hydrolysis rate compared to the single oxygen environment. The study on the hydrolysis mechanism of SMX in this paper will provide a theoretical basis for the treatment of antibiotic pollution.

9.
BMC Vet Res ; 19(1): 232, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936127

ABSTRACT

BACKGROUND: Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. RESULTS: The real-time RT-RPA reaction was carried out at a constant temperature of 39 °C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/µL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. CONCLUSIONS: The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis.


Subject(s)
Recombinases , Reverse Transcription , Animals , Recombinases/metabolism , Geese , Sensitivity and Specificity , China , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods
11.
Plants (Basel) ; 12(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37631178

ABSTRACT

BACKGROUND: Sainfoin is a forage legume that is widely distributed around the world and is beneficial for animals owing to the characteristics of its condensed tannins (CTs), which, from certain plants, can prolong the aerobic stability of silage. METHODS: The present study investigated whether sainfoin CTs can prolong aerobic stability by adding polyethylene glycol (PEG) to inactivate CT activity in the silage system. RESULTS: The results showed that aerobic stability increased under the PEG treatment (p < 0.05). Ammonia nitrogen (0.71 g/kg DM vs. 0.94 g/kg DM; p < 0.05) was higher in the PEG-treated group compared with the control after 3 d of aerobic exposure. BA was detected only in the PEG-treated group upon aerobic exposure. Yeasts were more abundant in the control compared with the PEG-treated group after 7 d of aerobic exposure, after which the relative abundance of Lactobacillus was lower in the PEG-treated group (65.01% vs. 75.01% in the control; p < 0.05), while the relative abundance of Pediococcus was higher in the PEG-treated group compared with the control (10.9% vs. 4.49%, respectively; p < 0.05).The relative abundances of Apiotrichum and Aspergillus were lower in the control than in the PEG-treated group after 7 d of aerobic exposure. CONCLUSIONS: The results suggested that sainfoin CTs decreased aerobic stability, but could inhibit certain bacteria and fungi, such as Pediococcus and Apiotrichum, and preserve the protein content during the aerobic exposure of silage.

12.
Sci Rep ; 13(1): 13747, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612457

ABSTRACT

Planting alfalfa in grey desert soil can have significant effects on soil nutrient levels, microbial communities, and overall soil improvement. High-throughput sequencing technology was used to explore the relationship between the rhizosphere microbial community structure of grey desert soil planted with different alfalfa varieties (Aohan, WL525HQ, Knight2, Kangsai, Victoria, and WL712), alfalfa characteristics and rhizosphere soil physicochemical properties. Alfalfa planting increased the nitrogen and organic matter in the grey desert soil, and the effects in Victoria, Kangsai, and Aohan were relatively better than those in the unplanted areas and other alfalfa areas. The Chao1 and Shannon indexes showed that the diversity and relative abundance of bacteria and fungi in Kangsai were significantly higher than those in the unplanted areas and other alfalfa areas. Redundancy analysis showed that available nitrogen and phosphorus, as well as fresh weight, significantly affected the changes in fungal and bacterial communities. Variance partitioning analysis showed that soil and alfalfa growth characteristics explained 50.04% and 51.58% of the structural changes in the bacteria and fungi, respectively. Therefore, planting alfalfa changed the community structure of bacteria and fungi, as well as the content of soil nutrients, and different varieties of alfalfa had different effects on soil improvement.


Subject(s)
High-Throughput Nucleotide Sequencing , Medicago sativa , Analysis of Variance , Nitrogen , Soil
13.
Int J Mol Sci ; 24(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37445765

ABSTRACT

Many plants have the capability to accumulate anthocyanins for coloration, and anthocyanins are advantageous to human health. In the case of hulless barley (Hordeum vulgare L. var. nudum), investigation into the mechanism of anthocyanin formation is limited to the level of protein-coding genes (PCGs). Here, we conducted a comprehensive bioinformatics analysis to identify a total of 9414 long noncoding RNAs (lncRNAs) in the seed coats of purple and white hulless barley along a developmental gradient. Transcriptome-wide profiles of lncRNAs documented several properties, including GC content fluctuation, uneven length, a diverse range of exon numbers, and a wide variety of transcript classifications. We found that certain lncRNAs in hulless barley possess detectable sequence conservation with Hordeum vulgare and other monocots. Furthermore, both differentially expressed lncRNAs (DElncRNAs) and PCGs (DEPCGs) were concentrated in the later seed development stages. On the one hand, DElncRNAs could potentially cis-regulate DEPCGs associated with multiple metabolic pathways, including flavonoid and anthocyanin biosynthesis in the late milk and soft dough stages. On the other hand, there was an opportunity for trans-regulated lncRNAs in the color-forming module to affect seed coat color by upregulating PCGs in the anthocyanin pathway. In addition, the interweaving of hulless barley lncRNAs and diverse TFs may function in seed coat coloration. Notably, we depicted a dynamic portrait of the anthocyanin synthesis pathway containing hulless barley lncRNAs. Therefore, this work provides valuable gene resources and more insights into the molecular mechanisms underlying anthocyanin accumulation in hulless barley from the perspective of lncRNAs, which facilitate the development of molecular design breeding in crops.


Subject(s)
Hordeum , RNA, Long Noncoding , Anthocyanins/genetics , Anthocyanins/metabolism , Hordeum/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Seeds/genetics , Tibet , Transcriptome
14.
New Phytol ; 239(5): 1790-1803, 2023 09.
Article in English | MEDLINE | ID: mdl-37430391

ABSTRACT

Meiotic crossovers ensure accurate chromosome segregation and increase genetic diversity. RAD51C and RAD51D play an early role in facilitating RAD51 during homologous recombination. However, their later function in meiosis is largely unknown in plants. Here, through targeted disruption of RAD51C and RAD51D, we generated three new mutants and revealed their later meiotic role in crossover maturation. The rad51c-3 and rad51d-4 mutants showed a mixture of bivalents and univalents and no chromosomal entanglements, whereas rad51d-5 exhibited an intermediate phenotype with reduced chromosomal entanglements and increased bivalent formation compared with knockout alleles. Comparisons of RAD51 loadings and chromosomal entanglements in these single mutants, rad51c-3 rad51d-4, rad51c-3 dmc1a dmc1b, and rad51d-4 dmc1a dmc1b suggest that the retained level of RAD51 in mutants is required for uncovering their function in crossover formation. Reductions in chiasma frequency and later HEI10 foci in these mutants support that crossover maturation requires RAD51C and RAD51D. Moreover, interaction between RAD51D and MSH5 indicates that RAD51 paralogs may cooperate with MSH5 to ensure accurate Holliday junction processing into crossover products. This finding of the role of RAD51 paralogs in crossover control may be conserved from mammals to plants and advances our current understanding of these proteins.


Subject(s)
Oryza , Animals , Oryza/genetics , Oryza/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Meiosis/genetics , Homologous Recombination , Mammals
15.
Poult Sci ; 102(8): 102830, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37343345

ABSTRACT

Poultry is one of the most commonly farmed species and the most widespread meat industries. However, numerous poultry flocks have been long threatened by pathogenic bacterial infections, especially antimicrobial resistant pathogens. Here the prevalence and the antimicrobial resistance (AMR) profiles of bacterial pathogens isolated from poultry in Jiangxi Province, China were investigated. From 2020 to 2022, 283 tissue and liquid samples were collected from clinically diseased poultry, including duck, chicken, and goose, with an overall positive isolation rate of 62.90%. Among all the 219 bacterial isolates, 29 strains were gram-positive and 190 strains were gram-negative. Major bacteria species involved were avian pathogenic Escherichia coli (APEC; 57.53%; 126/219), followed by Salmonella spp. (11.87%, 26/219), Pasteurella multocida (6.39%, 14/219), and Staphylococcus spp. (1.22%, 11/219). Antimicrobial susceptibility testing showed the APEC isolates displayed considerably higher levels of AMR than the Salmonella and P. multocida isolates. The APEC isolates showed high resistance rate to amoxicillin (89.68%), ampicillin (89.68%), and florfenicol (83.33%), followed by streptomycin (75.40%), cefradine (65.87%), and enrofloxacin (64.29%). Multidrug-resistant isolates were observed in APEC (99.21%), Salmonella spp. (96.16%), and P. multocida (85.71%), and nearly 3 quarters of the APEC strains were resistant to 7 or more categories of antimicrobial drugs. Moreover, blaNDM genes associated with carbapenemase resistance and mcr-1 associated with colisitin resistance were detected in the APEC isolates. Our findings could provide evidence-based guidance for veterinarians to prevent and control bacterial diseases, and be helpful for monitoring the emerging and development of AMR in poultry bacterial pathogens.


Subject(s)
Escherichia coli Infections , Pasteurella multocida , Poultry Diseases , Animals , Poultry , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Bacterial , Prevalence , Escherichia coli , Escherichia coli Infections/veterinary , Salmonella , Poultry Diseases/epidemiology , Poultry Diseases/microbiology
16.
Langmuir ; 39(23): 8234-8243, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37262019

ABSTRACT

A microfluidic method was developed to study the ion-specific effect on bubble coalescence in salt solutions. Compared with other reported methods, microfluidics provides a more direct and accurate means of measuring bubble coalescence in salt solutions. We analyzed the coalescence time and approach velocity between bubbles and used simulation to investigate the pressure evolution during the coalescence process. The coalescence time of the three salt solutions decreased initially and then increased as the concentration of the salt solution was increased. The concentration with the shortest coalescence time is considered as the transition concentration (TC) and exhibits ion-specific. At the TC, the change in coalescence time indicates a shift in the effect of salt on bubble coalescence from facilitation to initial inhibition. Meanwhile, it can be seen that the sodium halide solutions significantly inhibit the bubble coalescence and the inhibition capability follows the order NaCl > NaBr > NaI. The results of the approach velocity show that the coalescence time decreases with increasing approach velocity, as well as the approach velocity was strongly influenced by concentration. The approach velocity undergoes a significant change at the TC. Furthermore, simulations of bubble coalescence in the microchannel indicate that the vertical pressure gradient at the center point of the bubble pairs increases as bubbles approach, driving liquid film drainage until bubble coalescence. The pressure at the center of the bubble pair reaches the maximum when the bubbles have first coalesced. It was further revealed that the concentration of the salt solution has a significant impact on the maximum pressure, as evidenced by the observed trend of decreasing pressure values with increasing concentrations.

17.
Poult Sci ; 102(8): 102753, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37267641

ABSTRACT

Here, we examined the effects of crossbreeding and sex on growth performance, slaughter performance, and meat quality in Xingguo gray (XG) goose, using transcriptomic and metabolomic techniques. The experiment was conducted using 400 goslings (1-day old) of 2 genotypes: the XG breed and its ternary hybrids [F2 geese; (XG Goose♂ × Yangzhou Goose♀)♀ × Shitou Goose♂]. The goslings were divided into 4 groups: female XG, male XG, female F2 geese, and male F2 geese, and growth parameters were examined at 70 d of age, using 30 birds from each group. Following slaughter, samples of breast and thigh muscles were collected from each group for chemical, metabolome, and transcriptome analyses. Growth rate, live body and slaughter weights, meat chemical composition, and muscle fiber diameter were affected by crossbreeding and sex. Crossbreeding significantly improved the dressing percentage, semieviscerated rate, eviscerated yield, and abdominal fat yield of XG geese. To clarify the potential regulatory network affected by crossbreeding and sex, we used RNA-seq and nontargeted metabolomics to detect changes in male and female goose breast muscle. The transcriptome results showed that there were 534, 323, 297, and 492 differently expressed genes (DEGs) among the 4 comparison groups (XG-Female vs. F2-Female, XG-Male vs. F2-Male, F2-Male vs. F2-Female, and XG-Male vs. XG-Female, respectively) that were mainly related to muscle growth and development and fatty acid metabolism pathways. A total of 141 significantly differentially accumulated metabolites (DAMs) were enriched in serine and threonine, propionate, and pyruvate metabolism. Finally, we comprehensively analyzed the metabolome and transcriptome data and found that many DEGs and DAMs played crucial roles in lipid metabolism and muscle growth and development. In summary, crossbreeding can improve XG goose production performance and affect breast muscle gene expression and metabolites in both female and male geese.


Subject(s)
Geese , Multiomics , Female , Animals , Male , Geese/physiology , Chickens , Meat/analysis , Hybridization, Genetic
18.
Poult Sci ; 102(7): 102730, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37167886

ABSTRACT

The epidemic of goose astrovirus (GoAstV) caused huge losses to the poultry industry. Epidemiological studies in China revealed 2 circulating genotypes of GoAstV, but there is a lack of differential diagnosis tools. By analyzing all published genomes of GoAstV, this study designed specific PCR primers and Taqman probes to recognize different genotypes of GoAstV. After optimization and verification, this study developed a Taqman-based real-time quantitative PCR method that is capable of differential diagnosis. The established qPCR exhibited detection limitations of 100 copies/µL or 10 copies/µL, respectively, for GoAstV genotype 1 and genotype 2, and showed no false positive for other common avian viruses. This method was then used to analyze 72 samples collected from different regions in Jiangxi, and the results were verified by genome sequencing and phylogenetic analysis. These results revealed a complex coinfection of GoAstV different genotypes in China, highlighting the importance of long-term focus on the prevalence and genome evolution of GoAstV.


Subject(s)
Avastrovirus , Geese , Animals , Geese/genetics , Phylogeny , Chickens/genetics , Avastrovirus/genetics , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Genotype , Sensitivity and Specificity
19.
New Phytol ; 237(6): 2422-2434, 2023 03.
Article in English | MEDLINE | ID: mdl-36495065

ABSTRACT

The endonuclease methyl methanesulfonate and UV-sensitive protein 81 (MUS81) has been reported to participate in DNA repair during mitosis and meiosis. However, the exact meiotic function of MUS81 in rice remains unclear. Here, we use a combination of physiological, cytological, and genetic approaches to provide evidence that MUS81 functions in atypical recombination intermediate resolution rather than crossover designation in rice. Cytological and genetic analysis revealed that the total chiasma numbers in mus81 mutants were indistinguishable from wild-type. The numbers of HEI10 foci (the sites of interference-sensitive crossovers) in mus81 were also similar to that of wild-type. Moreover, disruption of MUS81 in msh5 or msh4 msh5 background did not further decrease chiasmata frequency, suggesting that rice MUS81 did not function in crossover designation. Mutation of FANCM and ZEP1 could enhance recombination frequency. Unexpectedly, chromosome fragments and bridges were frequently observed in mus81 zep1 and mus81 fancm, illustrating that MUS81 may resolve atypical recombination intermediates. Taken together, our data suggest that MUS81 contributes little to crossover designation but plays a crucial role in the resolution of atypical meiotic intermediates by working together with other anti-crossover factors.


Subject(s)
Crossing Over, Genetic , Oryza , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Meiosis/genetics , Endonucleases/genetics , Endonucleases/metabolism
20.
Front Microbiol ; 13: 1063914, 2022.
Article in English | MEDLINE | ID: mdl-36483209

ABSTRACT

The present study investigated the dynamic profiles of fermentation quality, aerobic stability, and the bacterial community of paper mulberry silage inoculants without (Control) or with Lactiplantibacillus plantarum (LP), Lactiplantibacillus brevis (LB), or their combination (LPLB), which was screened from naturally fermented paper mulberry. The results showed that the inoculated treatments had significantly reduced neutral detergent fiber, water-soluble carbohydrates, and ammoniacal nitrogen contents compared with the control after 60 days of ensiling (the decreased proportion of LP, LB, and LPLB treatments ranged from 7.33%-11.23%, 9.60%-21.44%, and 21.53%-29.23%, respectively, p < 0.05). The pH value of the LP and LB treatments was significantly lower than that of the control after 60 days of ensiling (4.42 and 4.56 vs. 4.71, p < 0.05). The LP treatment promoted lactic acid accumulation and LAB number compared with the control (66.59% vs. 54.12% and 8.71 log10 CFU/g vs. 8.52 log10 CFU/g, respectively, p < 0.05), and the LB and LPLB treatments inhibited the growth of yeast and mold after 14 days of fermentation. After 5 days of aerobic exposure, both the LB and LPLB treatments increased the aerobic stability time and acetic acid content (from 29 to 75 h and 16.14%-48.72%, respectively, p < 0.05), inhibited the growth of yeast and mold, and did not detect butyric acid. Additionally, the bacteria community of each treatment was dominated by Aerococcus on day 3 of ensilage (accounting for 54.36%-69.31%), while the inoculated treatments reduced the abundance of Aerococcus on day 60 (from 59.73% to 85.16%, p < 0.05), and Lactobacillus became the dominant genus (accounting for 54.57%-70.89%). Inoculation of L. plantarum effectively maintained the acidic environment at the end of the fermentation system by maintaining the abundance of Lactobacillus, maximizing the preservation of dry matter and protein, and reducing protein corruption. Inoculation of L. brevis alone or in combination with L. plantarum significantly inhibited the growth of mold and improved the aerobic stability of paper mulberry silage.

SELECTION OF CITATIONS
SEARCH DETAIL
...