Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci Biotechnol ; 10: 38, 2019.
Article in English | MEDLINE | ID: mdl-31114678

ABSTRACT

BACKGROUND: Overconditioned dairy cows are susceptible to excessive lipolysis and increased insulin resistance during the transition period. The associations among body fat reserve, insulin resistance, and lipolysis in adipose tissues (AT) remain to be elucidated. Therefore, this study aimed to investigate whether excessive fat reserves influence the insulin signaling pathway in AT postpartum. RESULTS: Twenty multiparous dairy cows were selected and assigned to one of two groups, according to prepartum body condition score (BCS): Control group (BCS = 3.0-3.5; n = 10) and Overconditioned group (BCS ≥ 4.0; n = 10). Blood samples were collected on days -14, -7, -4, -2, -1, 0, 1, 2, 4, 7, and 14 relative to parturition. Subcutaneous AT were collected on day 2 following parturition for quantitative real-time polymerase chain reaction and western blot analyses. No differences were observed between the two groups in serum glucose, non-esterified fatty acids, ß-hydroxybutyric acid, tumor necrosis factor (TNF) α, insulin, or leptin concentrations during the experimental period. Compared with the control cows, the overconditioned cows had lower serum triglyceride levels and higher adiponectin concentrations. In the AT postpartum, insulin receptor mRNA and protein levels were lower in the overconditioned cows than in the control cows, and no differences were found in glucose transporter 4 mRNA. Compared with the control cows, the overconditioned cows had lower mRNA levels of TNFα and higher mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ) in AT postpartum. The phosphorylated protein kinase B (AKT) content and phosphorylation rate of AKT were increased in the overconditioned cows compared with the control cows, which suggested that the downstream insulin signaling in AT was affected. CONCLUSIONS: In the present study, transition dairy cows with higher BCS did not show more fat mobilization. The changes of insulin signaling pathway in AT postpartum of overconditioned cows may be partly related to the expression of PPARγ and TNFα, and the secretion of adiponectin.

2.
PLoS One ; 7(7): e40666, 2012.
Article in English | MEDLINE | ID: mdl-22848393

ABSTRACT

Probiotic could be a promising alternative to antibiotics for the prevention of enteric infections; however, further information on the dose effects is required. In this study, weanling piglets were orally administered low- or high-dose Lactobacillus rhamnosus ACTT 7469 (10(10) CFU/d or 10(12) CFU/d) for 1 week before F4 (K88)-positive Escherichia coli challenge. The compositions of faecal and gastrointestinal microbiota were recorded; gene expression in the intestines was assessed by real-time PCR; serum tumour necrosis factor-α (TNF-α) concentrations and intestinal Toll-like receptor 4 (TLR4) were detected by ELISA and immunohistochemistry, respectively. Unexpectedly, high-dose administration increased the incidence of diarrhoea before F4(+)ETEC challenge, despite the fact that both doses ameliorated F4(+)ETEC-induced diarrhoea with increased Lactobacillus and Bifidobacterium counts accompanied by reduced coliform shedding in faeces. Interestingly, L. rhamnosus administration reduced Lactobacillus and Bifidobacterium counts in the colonic contents, and the high-dose piglets also had lower Lactobacillius and Bacteroides counts in the ileal contents. An increase in the concentration of serum TNF-α induced by F4(+)ETEC was observed, but the increase was delayed by L. rhamnosus. In piglets exposed to F4(+)ETEC, jejunal TLR4 expression increased at the mRNA and protein levels, while jejunal interleukin (IL)-8 and ileal porcine ß-defensins 2 (pBD2) mRNA expression increased; however, these increases were attenuated by administration of L. rhamnosus. Notably, expression of jejunal TLR2, ileal TLR9, Nod-like receptor NOD1 and TNF-α mRNA was upregulated in the low-dose piglets after F4(+)ETEC challenge, but not in the high-dose piglets. These findings indicate that pretreatment with a low dose of L. rhamnosus might be more effective than a high dose at ameliorating diarrhoea. There is a risk that high-dose L. rhamnosus pretreatment may negate the preventative effects, thus decreasing the prophylactic benefits against potential enteric pathogens. Our data suggest a safe threshold for preventative use of probiotics in clinical practice.


Subject(s)
Colon , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/immunology , Ileum , Lacticaseibacillus rhamnosus/immunology , Animals , Colon/immunology , Colon/microbiology , Cytokines/immunology , Diarrhea , Disease Models, Animal , Dose-Response Relationship, Immunologic , Escherichia coli Infections/pathology , Escherichia coli Infections/prevention & control , Female , Gene Expression Regulation/immunology , Ileum/immunology , Ileum/microbiology , Male , Nod1 Signaling Adaptor Protein/immunology , Swine , Toll-Like Receptor 2/immunology , Toll-Like Receptor 9/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...