Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Sci Total Environ ; 931: 172717, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38670371

ABSTRACT

The ubiquitous occurrence of microplastics (MPs) in the freshwater has attracted widespread attention. The Zhengzhou section of the Yellow River was the most prosperous region in ancient China, and the rapid urbanization, industrialization, and agricultural practices contributed to MPs pollution in aquatic systems recently, whereas the contamination status of MPs in the area is still not available. In this study, a total of fourteen sampling cross-sections were selected in the region to collect water samples systematically for the analysis of MPs pollution characteristics and potential risks. Results showed that abundance of MPs in the water were ranged from 2.33 to 15.50 n/L, with an average value of 6.40 ± 3.40 n/L, which was higher than it in other inland rivers from China. Moreover, the MPs of 0.5-2 mm were the dominant sizes in Yellow River of Zhengzhou region, and most of them were black fibres. The top three polymers were Polyethylene terephthalate (PET), Polyamide (PA) and Polypropylene (PP). High diversity indices of MPs observed at S3, S4, S5, S6, S7, and S8 for size, colour, polymer and shape indicated diverse and complex sources of MPs in those cross-sections. The MPs in water from Zhengzhou area of Yellow River probably degraded from textiles, fishing net, plastic bags, mulching film, packaging bags, and tire wear. The chemical risk assessment revealed a level III risk for study area, while S8 and S11 in which PVA or PAN with higher hazard score detected were categorised as class V risk. Coincidentally, probabilistic risk assessment showed a considerable ecological risk of MPs from Yellow River in Zhengzhou City, with possibility of 99.48 and 98.01 % adverse effect for food dilution and translocation-mediated mechanism, respectively. The results are expected to assistance for development of policies and ultimately combating MPs pollution.

2.
J Audiol Otol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685833

ABSTRACT

Background and Objectives: : A cochlear implant (CI) is an effective prosthetic device used to treat severe-to-profound hearing loss. The present study examined cognitive function in CI users by employing a web-based cognitive testing platform, i.e., BrainCheck, and explored the correlation between cognitive function and subjective evaluation of hearing. Subjects and Methods: : Forty-two CI users (mean age: 58.90 years) were surveyed in the subjective evaluation of hearing, and 20/42 participated in the BrainCheck cognitive tests (immediate recognition, Trail Making A, Trail Making B, Stroop, digit symbol substitution, and delayed recognition). As controls for cognitive function, young normal-hearing (YNH, mean age=23.83 years) and older normal-hearing (ONH, mean age=52.67 years) listener groups were subjected to Brain- Check testing. Results: : CI users exhibited poorer cognitive function than the normal hearing groups in all tasks except for immediate and delayed recognition. The highest percentage of CI users who had "possible" and "likely" cognitive impairment, based on BrainCheck scores (ranging from 0-200), was observed in tests assessing executive function. The composite cognitive score across domains tended to be related to subjective hearing (p=0.07). Conclusions: : The findings of the current study suggest that CI users had a higher likelihood of cognitive impairment in the executive function domain than in lower-level domains. BrianCheck online cognitive testing affords a convenient and effective tool to self-evaluate cognitive function in CI users.

3.
Huan Jing Ke Xue ; 45(3): 1457-1467, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471861

ABSTRACT

Urban rivers are the main receptors and transporters of microplastic pollution. Understanding the occurrence and environmental risk of microplastics in urban rivers can provide theoretical basis for further control of microplastic pollution. The Sishui River, a tributary of the Yellow River, was selected as the research object. A total of nine water samples were collected from sewage outlets of the Sishui River (Xingyang section). The microplastics in the collected samples were characterized by their sizes, shapes, and colors using a microscope. It was found that microplastics were mostly in the form of transparent fibers and fragments in the water body of sewage outlets, of which the size below 500 µm was relatively high. In addition, PET and PE polymers were identified as the main types using a laser infrared imager. The correlation analysis showed that there was a significant correlation between the PET and PE, indicating that they were similar in origin. The results of the environmental risk assessment showed that the type of microplastics was the main factor affecting the assessment results, whereas the risk values of six sewage samples containing PVC were high. However, the value of pollution load index revealed a low risk level of pollutants in the study area.

4.
Molecules ; 28(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36838784

ABSTRACT

With the widespread applications of manufactured nanoparticles (NPs), there are increasing concerns about their potential adverse effects on the environment and living systems. Many studies demonstrated that NPs could significantly affect the growth and development of crop plants. However, knowledge regarding the impacts of NPs on crop quality is rather limited. In this study, the effects of CeO2 NPs (25, 75, and 225 mg Ce/kg) and CeCl3 (25 mg Ce/kg) on the nutritional components of soil-cultivated corn and soybean plants were evaluated. Both treatments tended to decrease the dry weight of grain per plant, while only 225 mg/kg CeO2 NPs on soybean and CeCl3 on corn showed statistical significance compared with the respective control. CeO2 NPs at 225 mg/kg significantly decreased the content of starch in the corn kernels by 18.2% but increased total phenols in soybean seeds by 18.4%. Neither CeO2 NPs nor CeCl3 significantly affected the contents of minerals in corn kernels except for Zn. However, in the case of soybean, the two treatments tended to decrease the contents of P, Zn, Mn, and Mo but increase the content of S. Overall, the results suggest that CeO2 NPs and Ce3+ ions showed similar but not identical effects on corn and soybean plants. CeO2 NPs affect the nutritional quality of crop plants in a species-dependent manner.


Subject(s)
Cerium , Metal Nanoparticles , Nanoparticles , Glycine max , Zea mays , Cerium/pharmacology , Nutritive Value
6.
PLoS One ; 17(10): e0275772, 2022.
Article in English | MEDLINE | ID: mdl-36227872

ABSTRACT

OBJECTIVE: Cochlear implant (CI) recipient's speech perception performance is highly variable and is influenced by temporal processing abilities. Temporal processing is commonly assessed using a behavioral task that requires the participant to detect a silent gap with the pre- and post-gap stimuli of the same frequency (within-frequency gap detection) or of different frequencies (across-frequency gap detection). The purpose of the study was to evaluate behavioral and electrophysiological measures of within- and across-frequency temporal processing and their correlations with speech perception performance in CI users. DESIGN: Participants included 11 post-lingually deafened adult CI users (n = 15 ears; Mean Age = 50.2 yrs) and 11 age- and gender-matched normal hearing (NH) individuals (n = 15 ears; Mean Age = 49.0 yrs). Speech perception was assessed with Consonant-Nucleus-Consonant Word Recognition (CNC), Arizona Biomedical Sentence Recognition (AzBio), and Bamford-Kowal-Bench Speech-in-Noise Test (BKB-SIN) tests. Within- and across-frequency behavioral gap detection thresholds (referred to as the GDTwithin and GDTacross) were measured using an adaptive, two-alternative, forced-choice procedure. Cortical auditory evoked potentials (CAEPs) were elicited using within- and across-frequency gap stimuli under four gap duration conditions (no gap, GDT, sub-threshold GDT, and supra-threshold GDT). Correlations among speech perception, GDTs, and CAEPs were examined. RESULTS: CI users had poorer speech perception scores compared to NH listeners (p < 0.05), but the GDTs were not different between groups (p > 0.05). Compared to NH peers, CI users showed increased N1 latency in the CAEPs evoked by the across-frequency gap stimuli (p < 0.05). No group difference was observed for the CAEPs evoked by the within-frequency gap (p > 0.05). Three CI ears showing the longest GDTwithin also showed the poorest performance in speech in noise. The within-frequency CAEP increased in amplitude with the increase of gap duration; while the across-frequency CAEP displayed a similar amplitude for all gap durations. There was a significant correlation between speech scores and within-frequency CAEP measures for the supra-threshold GDT condition, with CI users with poorer speech performance having a smaller N1-P2 amplitude and longer N1 latency. No correlations were found among GDTacross, speech perception, and across-frequency CAEP measures. CONCLUSIONS: Within- and across-frequency gap detection may involve different neural mechanisms. The within-frequency gap detection task can help identify CI users with poor speech performance for rehabilitation. The within-frequency CAEP is a better predictor for speech perception performance than the across-frequency CAEP.


Subject(s)
Cochlear Implantation , Cochlear Implants , Speech Perception , Time Perception , Adult , Evoked Potentials, Auditory/physiology , Humans , Middle Aged , Speech Perception/physiology
7.
Heliyon ; 8(9): e10695, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36164537

ABSTRACT

Slag-based cementitious material was synthesized from blast furnace slag, clinker, gypsum, and activator to replace cement in cemented paste backfill (CPB). We researched the influence of slag-based cementitious material dosages and curing times on the properties of CPB, including unconfined compressive strength tests, leachate toxicity and chemical speciation of heavy metal as well as microstructural tests and analyses. The results indicated that the addition of slag-based cementitious material improved the compressive strength of the CPB, which attained the compressive strength requirements (≥1.0 MPa) at 28 days. The leachate concentrations of Pb, Cr, Cu, and Cd in CPB decreased as the slag-based cementitious material dosage and curing period increased, which met the standard (GB 5085.3-2007). The dosage of 10% slag-based cementitious material could effectively immobilize the heavy metals in the tailings, and the immobilization performance was similar to that of 20% cement, which indicated the amount of slag-based cementitious material was only half the quantity of cement in CPB. Microstructural analysis showed the hydration products included calcium silicate hydrate, ettringite, and portlandite, which could enhance the bonding force between the tailing grains.

8.
Front Hum Neurosci ; 15: 757254, 2021.
Article in English | MEDLINE | ID: mdl-34744668

ABSTRACT

One of the biggest challenges that face cochlear implant (CI) users is the highly variable hearing outcomes of implantation across patients. Since speech perception requires the detection of various dynamic changes in acoustic features (e.g., frequency, intensity, timing) in speech sounds, it is critical to examine the ability to detect the within-stimulus acoustic changes in CI users. The primary objective of this study was to examine the auditory event-related potential (ERP) evoked by the within-stimulus frequency changes (F-changes), one type of the acoustic change complex (ACC), in adult CI users, and its correlation to speech outcomes. Twenty-one adult CI users (29 individual CI ears) were tested with psychoacoustic frequency change detection tasks, speech tests including the Consonant-Nucleus-Consonant (CNC) word recognition, Arizona Biomedical Sentence Recognition in quiet and noise (AzBio-Q and AzBio-N), and the Digit-in-Noise (DIN) tests, and electroencephalographic (EEG) recordings. The stimuli for the psychoacoustic tests and EEG recordings were pure tones at three different base frequencies (0.25, 1, and 4 kHz) that contained a F-change at the midpoint of the tone. Results showed that the frequency change detection threshold (FCDT), ACC N1' latency, and P2' latency did not differ across frequencies (p > 0.05). ACC N1'-P2 amplitude was significantly larger for 0.25 kHz than for other base frequencies (p < 0.05). The mean N1' latency across three base frequencies was negatively correlated with CNC word recognition (r = -0.40, p < 0.05) and CNC phoneme (r = -0.40, p < 0.05), and positively correlated with mean FCDT (r = 0.46, p < 0.05). The P2' latency was positively correlated with DIN (r = 0.47, p < 0.05) and mean FCDT (r = 0.47, p < 0.05). There was no statistically significant correlation between N1'-P2' amplitude and speech outcomes (all ps > 0.05). Results of this study indicated that variability in CI speech outcomes assessed with the CNC, AzBio-Q, and DIN tests can be partially explained (approximately 16-21%) by the variability of cortical sensory encoding of F-changes reflected by the ACC.

9.
Huan Jing Ke Xue ; 42(7): 3430-3441, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212670

ABSTRACT

Taking urban domestic sludge as the research object, a slag-based modifying agent was used to modify sludge under different dosages and curing times, and the solidification effect of six heavy metals in the sludge, namely Zn, Cr, Cu, Pb, As, and Cd, were evaluated by analyzing stability efficiency and morphological changes. The results showed that the stability efficiency improved as curing time and dosage increased, reaching the maximum when the curing time was 14 d and the dosage was 50%. Under these conditions, Cu reached the maximum of 69.62%, and the most rapid growth was observed when dosages were 5%-20%. Through the regression analysis of adding amount, maintenance time and stability efficiency, it was found that the fitting correlation coefficient Cu was the highest 0.97, with a strong degree of fitting and a strong interaction between adding amount and maintenance time, which had a significant influence on the stability efficiency. In addition, Pb and As were the residual state, Cu and Cr were oxidizable state and residue state, Zn and Cd were reducible and extractable state as the main forms in the sludge after modifying, respectively. With the increase of curing time or dosage, the residual state of each heavy metal increased by 7%-86%. The results showed that the slag-based modifying agent could effectively solidify heavy metals in sludge and reused solid wastes such as sludge.


Subject(s)
Metals, Heavy , Sewage
10.
Hear Res ; 400: 108110, 2021 02.
Article in English | MEDLINE | ID: mdl-33220506

ABSTRACT

Sounds we hear in our daily life contain changes in the acoustic features (e.g., frequency, intensity, and duration or "what" information) and/or changes in location ("where" information). The purpose of this study was to examine the cortical auditory evoked potentials (CAEPs) to the change within a stimulus, the acoustic change complex (ACC), in frequency (F) and location (L) of the sound in normal hearing listeners. Fifteen right-handed young normal hearing listeners participated in the electroencephalographic (EEG) recordings. The acoustic stimuli were pure tones (base frequency at 250 Hz) of 1 s, with a perceivable change either in location (L, 180°), frequency (F, 5% and 50%), or both location and frequency (L+F) in the middle of the tone. Additionally, the 250 Hz tone of 1 sec without any change was used as a reference. The participants were asked to listen passively to the stimuli and not to move their heads during the testing. Compared to the reference tone, by which only the onset-CAEP was elicited, the tones containing changes (L, F, or L+F) elicited both onset-CAEP and the ACC. The waveform analysis of ACCs from the vertex electrode (electrode Cz) showed that, larger sound changes evoked larger peak amplitudes [e.g., (L+50%F)- > L-change; (L+50%F)- > 5%F-change] and shorter the peak latencies ([(L+5%F)- < 5%F-change; 50%F- < 5%F-change; (L+50%F)- < 5%F-change] . The current density patterns for the ACC N1' peak displayed some differences between L-change vs. F-change, supporting different cortical processing for "where" and "what" information of the sound; regardless of the nature of the sound change, larger changes evoked a stronger activation than smaller changes [e.g., L- > 5%F-change; (L+5%F)- > 5%F-change; 50%F- > 5%F-change] in frontal lobe regions including the cingulate gyrus, medial frontal gyrus (MFG), superior frontal gyrus (SFG), the limbic lobe cingulate gyrus, and the parietal lobe postcentral gyrus. The results suggested that sound change-detection involves memory-based acoustic comparison (the neural encoding for the sound change vs. neural encoding for the pre-change stimulus stored in memory) and involuntary attention switch.


Subject(s)
Auditory Cortex , Hearing , Acoustic Stimulation , Auditory Perception , Evoked Potentials, Auditory , Humans
11.
Front Neurosci ; 14: 368, 2020.
Article in English | MEDLINE | ID: mdl-32410947

ABSTRACT

Cochlear implants (CI) are widely used in children and adults to restore hearing function. However, CI outcomes are vary widely. The affected factors have not been well understood. It is well known that the right and left hemispheres play different roles in auditory perception in adult normal hearing listeners. It is unknown how the implantation side may affect the outcomes of CIs. In this study, the effect of the implantation side on how the brain processes frequency changes within a sound was examined in 12 right-handed adult CI users. The outcomes of CIs were assessed with behaviorally measured frequency change detection threshold (FCDT), which has been reported to significantly affect CI speech performance. The brain activation and regions were also examined using acoustic change complex (ACC, a type of cortical potential evoked by acoustic changes within a stimulus), on which the waveform analysis and the standardized low-resolution brain electromagnetic tomography (sLORETA) were performed. CI users showed activation in the temporal lobe and non-temporal areas, such as the frontal lobe. Right-ear CIs could more efficiently activate the contralateral hemisphere compared to left-ear CIs. For right-ear CIs, the increased activation in the contralateral temporal lobe together with the decreased activation in the contralateral frontal lobe was correlated with good performance of frequency change detection (lower FCDTs). Such a trend was not found in left-ear CIs. These results suggest that the implantation side may significantly affect neuroplasticity patterns in adults.

12.
Front Hum Neurosci ; 14: 110, 2020.
Article in English | MEDLINE | ID: mdl-32296318

ABSTRACT

INTRODUCTION: Most cochlear implant (CI) users have difficulty in listening tasks that rely strongly on perception of frequency changes (e.g., speech perception in noise, musical melody perception, etc.). Some previous studies using behavioral or subjective assessments have shown that short-term music training can benefit CI users' perception of music and speech. Electroencephalographic (EEG) recordings may reveal the neural basis for music training benefits in CI users. OBJECTIVE: To examine the effects of short-term music training on CI hearing outcomes using a comprehensive test battery of subjective evaluation, behavioral tests, and EEG measures. DESIGN: Twelve adult CI users were recruited for a home-based music training program that focused on attentive listening to music genres and materials that have an emphasis on melody. The participants used a music streaming program (i.e., Pandora) downloaded onto personal electronic devices for training. The participants attentively listened to music through a direct audio cable or through Bluetooth streaming. The training schedule was 40 min/session/day, 5 days/week, for either 4 or 8 weeks. The pre-training and post-training tests included: hearing thresholds, Speech, Spatial and Qualities of Hearing Scale (SSQ12) questionnaire, psychoacoustic tests of frequency change detection threshold (FCDT), speech recognition tests (CNC words, AzBio sentences, and QuickSIN), and EEG responses to tones that contained different magnitudes of frequency changes. RESULTS: All participants except one finished the 4- or 8-week training, resulting in a dropout rate of 8.33%. Eleven participants performed all tests except for two who did not participate in EEG tests. Results showed a significant improvement in the FCDTs as well as performance on CNC and QuickSIN after training (p < 0.05), but no significant improvement in SSQ scores (p > 0.05). Results of the EEG tests showed larger post-training cortical auditory evoked potentials (CAEPs) in seven of the nine participants, suggesting a better cortical processing of both stimulus onset and within-stimulus frequency changes. CONCLUSION: These preliminary data suggest that extensive, focused music listening can improve frequency perception and speech perception in CI users. Further studies that include a larger sample size and control groups are warranted to determine the efficacy of short-term music training in CI users.

13.
Patient Educ Couns ; 103(3): 530-536, 2020 03.
Article in English | MEDLINE | ID: mdl-31704032

ABSTRACT

OBJECTIVE: To understand the communication and social challenges that individuals with SSD face post diagnosis. METHODS: Fifty-two single-sided deaf patients from all over the world participated in semi-structured interviews. Interviews were digitally recorded, transcribed verbatim, and coded using a thematic analysis approach. RESULTS: Patients with single sided deafness identified challenges including: increased reliance on family members, decreased sense of autonomy, communication quality changes with family members, information discrepancy across family members and various emotional responses, conflicting information from interactions with multiple medical professionals, and lack of knowledge regarding what to anticipate post diagnosis. CONCLUSION: This study provides insights into patients' perspectives around single-sided deafness and its challenges, and the various health care approaches (e.g., patient- and family-centered care, third party disability, patient navigation) that could be implemented post diagnosis to decrease negative experiences and outcomes associated with SSD. PRACTICAL IMPLICATIONS: This study has practical implications for improving our understanding of what single-sided deaf patients need and for health professionals to offer better care to current and future populations impacted by single-sided deafness.


Subject(s)
Communication , Family/psychology , Hearing Loss, Unilateral/psychology , Personal Autonomy , Persons With Hearing Impairments/psychology , Adult , Aged , Decision Making , Female , Humans , Interviews as Topic , Male , Middle Aged , Patient-Centered Care , Physician-Patient Relations , Qualitative Research
14.
Int J Audiol ; 58(11): 717-723, 2019 11.
Article in English | MEDLINE | ID: mdl-31187671

ABSTRACT

Objectives: The objective is to compare musicians and non-musicians in signal-in-noise perception.Design: Participants underwent the following tests: (1) High-frequency (HF) audiometry, (2) QuickSIN (a test for speech perception in noise), and (3) Binaural Masking Level Difference (BMLD) test (a test that examines the hearing threshold of a low-frequency tone from noise masking when the phase of the signal or noise in one ear is reversed with respect to the phase of the signal or noise in the other ear, i.e. the difference in the threshold for detection of the tone in noise under the SπNo and SoNo conditions).Study sample: Thirty-four healthy young normal-hearing listeners including 17 musicians (M) and 17 non-musicians (NM).Results: There were no study group difference in HF audiometry and QuickSIN. The M group had a significantly better performance under the SoNo but not under the SπNo condition. As a result, the BMLD value (SoNo-SπNo) was significantly smaller in the M group than in the NM group.Conclusions: There is a musicians' advantage in binaural tone-in-noise detection in the BMLD task under the SoNo condition, suggesting that long-term music training positively shapes the auditory system.


Subject(s)
Auditory Perception/physiology , Music/psychology , Perceptual Masking/physiology , Adult , Audiometry, Pure-Tone , Female , Humans , Male , Noise , Signal-To-Noise Ratio , Young Adult
15.
Hear Res ; 379: 12-20, 2019 08.
Article in English | MEDLINE | ID: mdl-31035223

ABSTRACT

Dynamic frequency changes in sound provide critical cues for speech perception. Most previous studies examining frequency discrimination in cochlear implant (CI) users have employed behavioral tasks in which target and reference tones (differing in frequency) are presented statically in separate time intervals. Participants are required to identify the target frequency by comparing stimuli across these time intervals. However, perceiving dynamic frequency changes in speech requires detection of within-interval frequency change. This study explored the relationship between detection of within-interval frequency changes and speech perception performance of CI users. Frequency change detection thresholds (FCDTs) were measured in 20 adult CI users using a 3-alternative forced-choice (3AFC) procedure. Stimuli were 1-sec pure tones (base frequencies at 0.25, 1, 4 kHz) with frequency changes occurring 0.5 s after the tone onset. Speech tests were 1) Consonant-Nucleus-Consonant (CNC) monosyllabic word recognition, 2) Arizona Biomedical Sentence Recognition (AzBio) in Quiet, 3) AzBio in Noise (AzBio-N, +10 dB signal-to-noise/SNR ratio), and 4) Digits-in-noise (DIN). Participants' subjective satisfaction with the CI was obtained. Results showed that correlations between FCDTs and speech perception were all statistically significant. The satisfaction level of CI use was not related to FCDTs, after controlling for major demographic factors. DIN speech reception thresholds were significantly correlated to AzBio-N scores. The current findings suggest that the ability to detect within-interval frequency changes may play an important role in speech perception performance of CI users. FCDT and DIN can serve as simple and rapid tests that require no or minimal linguistic background for the prediction of CI speech outcomes.


Subject(s)
Cochlear Implants , Speech Perception/physiology , Acoustic Stimulation , Adult , Aged , Aged, 80 and over , Audiometry, Pure-Tone , Auditory Threshold/physiology , Cochlear Implants/psychology , Deafness/psychology , Deafness/rehabilitation , Female , Humans , Male , Middle Aged , Patient Satisfaction , Pitch Discrimination/physiology , Psychoacoustics , Signal-To-Noise Ratio , Speech Acoustics , Young Adult
16.
Audiol Neurootol ; 23(3): 152-164, 2018.
Article in English | MEDLINE | ID: mdl-30300882

ABSTRACT

The purpose of this study was to examine neural substrates of frequency change detection in cochlear implant (CI) recipients using the acoustic change complex (ACC), a type of cortical auditory evoked potential elicited by acoustic changes in an ongoing stimulus. A psychoacoustic test and electroencephalographic recording were administered in 12 postlingually deafened adult CI users. The stimuli were pure tones containing different magnitudes of upward frequency changes. Results showed that the frequency change detection threshold (FCDT) was 3.79% in the CI users, with a large variability. The ACC N1' latency was significantly correlated with the FCDT and the clinically collected speech perception score. The results suggested that the ACC evoked by frequency changes can serve as a useful objective tool in assessing frequency change detection capability and predicting speech perception performance in CI users.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness/rehabilitation , Evoked Potentials, Auditory , Pitch Discrimination , Acoustic Stimulation , Adult , Aged , Auditory Cortex/physiology , Electroencephalography , Female , Humans , Male , Middle Aged , Psychoacoustics , Speech Perception
17.
Int J Psychophysiol ; 128: 7-21, 2018 06.
Article in English | MEDLINE | ID: mdl-29580903

ABSTRACT

The brain undergoes enormous changes during childhood. Little is known about how the brain develops to serve word processing. The objective of the present study was to investigate the maturational changes of word processing in children and adolescents using magnetoencephalography (MEG). Responses to a word processing task were investigated in sixty healthy participants. Each participant was presented with simultaneous visual and auditory word pairs in "match" and "mismatch" conditions. The patterns of neuromagnetic activation from MEG recordings were analyzed at both sensor and source levels. Topography and source imaging revealed that word processing transitioned from bilateral connections to unilateral connections as age increased from 6 to 17 years old. Correlation analyses of language networks revealed that the path length of word processing networks negatively correlated with age (r = -0.833, p < 0.0001), while the connection strength (r = 0.541, p < 0.01) and the clustering coefficient (r = 0.705, p < 0.001) of word processing networks were positively correlated with age. In addition, males had more visual connections, whereas females had more auditory connections. The correlations between gender and path length, gender and connection strength, and gender and clustering coefficient demonstrated a developmental trend without reaching statistical significance. The results indicate that the developmental trajectory of word processing is gender specific. Since the neuromagnetic signatures of these gender-specific paths to adult word processing were determined using non-invasive, objective, and quantitative methods, the results may play a key role in understanding language impairments in pediatric patients in the future.


Subject(s)
Cerebral Cortex/physiology , Connectome/methods , Language , Magnetoencephalography/methods , Nerve Net/physiology , Pattern Recognition, Visual/physiology , Sex Characteristics , Speech Perception/physiology , Adolescent , Cerebral Cortex/growth & development , Child , Female , Humans , Male , Nerve Net/growth & development , Reading
18.
Front Neurosci ; 10: 464, 2016.
Article in English | MEDLINE | ID: mdl-27826221

ABSTRACT

Objective: The objectives of this study were: (1) to determine if musicians have a better ability to detect frequency changes under quiet and noisy conditions; (2) to use the acoustic change complex (ACC), a type of electroencephalographic (EEG) response, to understand the neural substrates of musician vs. non-musician difference in frequency change detection abilities. Methods: Twenty-four young normal hearing listeners (12 musicians and 12 non-musicians) participated. All participants underwent psychoacoustic frequency detection tests with three types of stimuli: tones (base frequency at 160 Hz) containing frequency changes (Stim 1), tones containing frequency changes masked by low-level noise (Stim 2), and tones containing frequency changes masked by high-level noise (Stim 3). The EEG data were recorded using tones (base frequency at 160 and 1200 Hz, respectively) containing different magnitudes of frequency changes (0, 5, and 50% changes, respectively). The late-latency evoked potential evoked by the onset of the tones (onset LAEP or N1-P2 complex) and that evoked by the frequency change contained in the tone (the acoustic change complex or ACC or N1'-P2' complex) were analyzed. Results: Musicians significantly outperformed non-musicians in all stimulus conditions. The ACC and onset LAEP showed similarities and differences. Increasing the magnitude of frequency change resulted in increased ACC amplitudes. ACC measures were found to be significantly different between musicians (larger P2' amplitude) and non-musicians for the base frequency of 160 Hz but not 1200 Hz. Although the peak amplitude in the onset LAEP appeared to be larger and latency shorter in musicians than in non-musicians, the difference did not reach statistical significance. The amplitude of the onset LAEP is significantly correlated with that of the ACC for the base frequency of 160 Hz. Conclusion: The present study demonstrated that musicians do perform better than non-musicians in detecting frequency changes in quiet and noisy conditions. The ACC and onset LAEP may involve different but overlapping neural mechanisms. Significance: This is the first study using the ACC to examine music-training effects. The ACC measures provide an objective tool for documenting musical training effects on frequency detection.

19.
J Am Acad Audiol ; 27(9): 701-713, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27718347

ABSTRACT

BACKGROUND: Although most cochlear implant (CI) users achieve improvements in speech perception, there is still a wide variability in speech perception outcomes. There is a growing body of literature that supports the relationship between individual differences in temporal processing and speech perception performance in CI users. Previous psychophysical studies have emphasized the importance of temporal acuity for overall speech perception performance. Measurement of gap detection thresholds (GDTs) is the most common measure currently used to assess temporal resolution. However, most GDT studies completed with CI participants used direct electrical stimulation not acoustic stimulation and they used psychoacoustic research paradigms that are not easy to administer clinically. Therefore, it is necessary to determine if the variance in GDTs assessed with clinical measures of temporal processing such as the Randomized Gap Detection Test (RGDT) can be used to explain the variability in speech perception performance. PURPOSE: The primary goal of this study was to investigate the relationship between temporal processing and speech perception performance in CI users. RESEARCH DESIGN: A correlational study investigating the relationship between behavioral GDTs (assessed with the RGDT or the Expanded Randomized Gap Detection Test) and commonly used speech perception measures (assessed with the Speech Recognition Test [SRT], Central Institute for the Deaf W-22 Word Recognition Test [W-22], Consonant-Nucleus-Consonant Test [CNC], Arizona Biomedical Sentence Recognition Test [AzBio], Bamford-Kowal-Bench Speech-in-Noise Test [BKB-SIN]). STUDY SAMPLE: Twelve postlingually deafened adult CI users (24-83 yr) and ten normal-hearing (NH; 22-30 yr) adults participated in the study. DATA COLLECTION AND ANALYSIS: The data were collected in a sound-attenuated test booth. After measuring pure-tone thresholds, GDTs and speech perception performance were measured. The difference in performance between-participant groups on the aforementioned tests, as well as the correlation between GDTs and speech perception performance was examined. The correlations between participants' biologic factors, performance on the RGDT and speech perception measures were also explored. RESULTS: Although some CI participants performed as well as the NH listeners, the majority of the CI participants displayed temporal processing impairments (GDTs > 20 msec) and poorer speech perception performance than NH participants. A statistically significant difference was found between the NH and CI test groups in GDTs and some speech tests (SRT, W-22, and BKB-SIN). For the CI group, there were significant correlations between GDTs and some measures of speech perception (CNC Phoneme, AzBio, BKB-SIN); however, no significant correlations were found between biographic factors and GDTs or speech perception performance. CONCLUSIONS: Results support the theory that the variability in temporal acuity in CI users contributes to the variability in speech performance. Results also indicate that it is reasonable to use the clinically available RGDT to identify CI users with temporal processing impairments for further appropriate rehabilitation.


Subject(s)
Cochlear Implants , Speech Perception , Acoustic Stimulation , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cochlear Implantation , Deafness/physiopathology , Deafness/therapy , Female , Humans , Male , Middle Aged , Noise , Speech Discrimination Tests , Time Factors , Young Adult
20.
Clin Neurophysiol ; 127(2): 1603-1617, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26616545

ABSTRACT

OBJECTIVE: Voice onset time (VOT) is a critical temporal cue for perception of speech in cochlear implant (CI) users. We assessed the cortical auditory evoked potentials (CAEPs) to consonant vowels (CVs) with varying VOTs and related these potentials to various speech perception measures. METHODS: CAEPs were recorded from 64 scalp electrodes during passive listening in CI and normal-hearing (NH) groups. Speech stimuli were synthesized CVs from a 6-step VOT /ba/-/pa/ continuum ranging from 0 to 50 ms VOT in 10-ms steps. Behavioral measures included the 50% boundary point for categorical perception ("ba" to "pa") from an active condition task. RESULTS: Behavioral measures: CI users with poor speech perception performance had prolonged 50% VOT boundary points compared to NH subjects. The 50% boundary point was also significantly correlated to the ability to discriminate consonants in quiet and noise masking. Electrophysiology: The most striking difference between the NH and CI subjects was that the P2 response was significantly reduced in amplitude in the CI group compared to NH. N1 amplitude did not differ between NH and CI groups. P2 latency increased with increases in VOT for both NH and CI groups. P2 was delayed more in CI users with poor speech perception compared to NH subjects. N1 amplitude was significantly related to consonant perception in noise while P2 latency was significantly related to vowel perception in noise. When dipole source modelling in auditory cortex was used to characterize N1/P2, more significant relationships were observed with speech perception measures compared to the same N1/P2 activity when measured at the scalp. N1 dipole amplitude measures were significantly correlated with consonants in noise discrimination. Like N1, the P2 dipole amplitude was correlated with consonant discrimination, but additional significant relationships were observed such as sentence and word identification. CONCLUSIONS: P2 responses to a VOT continuum stimulus were different between NH subjects and CI users. P2 responses show more significant relationships with speech perception than N1 responses. SIGNIFICANCE: The current findings indicate that N1/P2 measures during a passive listening task relate to speech perception outcomes after cochlear implantation.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Cochlear Implants , Evoked Potentials, Auditory/physiology , Speech Perception/physiology , Voice/physiology , Adult , Aged , Cochlear Implantation , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...