Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
2.
Mater Today Bio ; 20: 100651, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37206878

ABSTRACT

A variety of novel biomaterials have recently been developed to promote bone regeneration. However, the current biomaterials cannot accurately and effectively resist bacterial invasion. In this study, we constructed microspheres that mimic certain functions of macrophages as additives to bone repair materials, which can be manipulated as demanded to resist bacteria effectively and protect bone defect healing. Firstly, we prepared gelatin microspheres (GMSs) by an emulsion-crosslinking method, which were subsequently coated with polydopamine (PDA). Then, amino antibacterial nanoparticles obtained by a nanoprecipitation-self-assembly method and commercial amino magnetic nanoparticles were modified onto these PDA-coated GMSs to construct the functionalized microspheres (FMSs). The results showed that the FMSs possessed a rough topography and could be manipulated by a 100-400 â€‹mT static magnetic field to migrate directionally in unsolidified hydrogels. Moreover, in vitro experiments with near-infrared (NIR) showed that the FMSs had a sensitive and recyclable photothermal performance and could capture and kill Porphyromonas gingivalis by releasing reactive oxygen species. Finally, the FMSs were mixed with osteogenic hydrogel precursor, injected into the Sprague-Dawley rat periodontal bone defect of maxillary first molar (M1), and subsequently driven by magnetism to the cervical surface of M1 and the outer surface of the gel system for targeted sterilization under NIR, thus protecting the bone defect healing. In conclusion, the FMSs had excellent manipulation and antimicrobial performances. This provided us with a promising strategy to construct light-magnetism-responsive antibacterial materials to build a beneficial environment for bone defect healing.

3.
Bioact Mater ; 19: 418-428, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35574059

ABSTRACT

Labeling of mesenchymal stem cells (MSCs) with superparamagnetic iron oxide nanoparticles (SPIONs) has emerged as a potential method for magnetic resonance imaging (MRI) tracking of transplanted cells in tissue repair studies and clinical trials. Labeling of MSCs using clinically approved SPIONs (ferumoxytol) requires the use of transfection reagents or magnetic field, which largely limits their clinical application. To overcome this obstacle, we established a novel and highly effective method for magnetic labeling of MSC spheroids using ferumoxytol. Unlike conventional methods, ferumoxytol labeling was done in the formation of a mechanically tunable biomimetic hydrogel-induced MSC spheroids. Moreover, the labeled MSC spheroids exhibited strong MRI T2 signals and good biosafety. Strikingly, the encapsulated ferumoxytol was localized in the extracellular matrix (ECM) of the spheroids instead of the cytoplasm, minimizing the cytotoxicity of ferumoxytol and maintaining the viability and stemness properties of biomimetic hydrogel-induced MSC spheroids. This demonstrates the potential of this method for post-transplantation MRI tracking in the clinic.

4.
Biomater Adv ; 136: 212777, 2022 May.
Article in English | MEDLINE | ID: mdl-35929315

ABSTRACT

Granular scaffolds have been extensively used in the clinic to repair irregular maxillofacial defects. There remain some challenges for the repair of trabecular structures in cancellous bone due to the reticular lamella-like morphology. In this study, we fabricated a novel granular scaffold by rational design of components with different degradation rates so that the morphology of the novel scaffold can evolve to match the growth period of bone cells. Here, polycaprolactone (PCL) was used to fabricate porous microspheres as a skeleton with slow degradation. The macropores were filled with quick degraded gelatin to form complete microspheres. Asynchronous degradation of the two components altered the morphology of the evolutive scaffold from compact to porous, gradually exposing the ridge-like skeletons. This scaffold reversed the decline of cellular adhesion to simple porous skeletons during the initial adhesion. Furthermore, the cells were able to grow into the pores and adhere onto the skeletons with an elongated cellular morphology, facilitating osteogenic differentiation. This novel scaffold was experimentally proven to promote the regeneration of alveolar bone along with a good percentage of bone volume and the formation of trabecular structures. We believe this morphology-evolved scaffold is highly promising for regenerative applications in the clinic.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Cancellous Bone , Osteogenesis , Porosity , Tissue Scaffolds/chemistry
5.
Biomed Mater ; 17(5)2022 07 26.
Article in English | MEDLINE | ID: mdl-35835088

ABSTRACT

Calvarial bone defect remains a clinical challenge due to the lack of efficient osteo-inductive agent. Herein, a novel calcium and phosphorus codoped carbon dot (Ca/P-CD) for bone regeneration was synthesized using phosphoethanolamine and calcium gluconate as precursors. The resultant Ca/P-CDs exhibited ultra-small size, stable excitation dependent emission spectra and favorable dispersibility in water. Moreover, Ca/P-CDs with good biocompatibility rapidly entered the cytoplasm through endocytosis and increased the expression of bone differentiation genes. After mixing with temperature-sensitive hydrogel, Ca/P-CDs were injectedin situinto calvarial defect and promoted the repair of bone injury. These Ca/P-CDs provide a new treatment method for the bone repair and should be expended the application in the biomedical fields.


Subject(s)
Carbon , Quantum Dots , Bone Regeneration , Calcium , Osteogenesis , Phosphorus
6.
Front Bioeng Biotechnol ; 10: 887454, 2022.
Article in English | MEDLINE | ID: mdl-35497349

ABSTRACT

Repair of bone defects caused by trauma or diseases is the primary focus of prosthodontics. Hydrogels are among the most promising candidates for bone tissue regeneration due to their unique features such as excellent biocompatibility, similarities to biological tissues, and plasticity. Herein, we developed a type of novel biomimetic interpenetrating polymeric network (IPN) hydrogel by combining methacrylated alginate and 4-arm poly (ethylene glycol)-acrylate (4A-PEGAcr) through photo-crosslinking. Platelet-rich plasma (PRP), a patient-specific source of autologous growth factors, was incorporated into the hydrogel, and thereafter the hydrogels were biological mineralized by simulated body fluid (SBF). Physical properties of hydrogels were comprehensively characterized. In vitro studies demonstrated that the incorporation of PRP and biomineralization promoted the biocompatibility of hydrogel. Strikingly, the osteogenic bioactivities, including ALP activity, mineralized nodule formation, and expression of osteogenic markers were found substantially enhanced by this biomineralized PRP-hydrogel. Finally, a rabbit model of bone defect was employed to assess in vivo bone regeneration, micro-CT analysis showed that the biomineralized PRP-hydrogels could significantly accelerate bone generation. We believed that this novel biomineralized PRP-incorporated IPN hydrogel could be promising scaffolds for bone tissue regeneration.

7.
Oral Dis ; 28(7): 1871-1881, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33694237

ABSTRACT

OBJECTIVE: This study sought to investigate the effect of miR-5191 on proliferation, invasion and metastasis in salivary adenoid cystic carcinoma (SACC). MATERIALS AND METHODS: The differential expression level of miR-5191 between 5 primary tumor and adjacent non-neoplastic samples, and in two SACC cell lines was detected by quantitative real-time PCR. Cell proliferation, invasion, and migration were performed, followed by luciferase reporter assay and western analysis. The effect of miR-5191 on cell proliferation and apoptosis was evaluated by cell growth and apoptosis assay. The function of miR-5191 in SACC tumorigenesis and metastasis in vivo was investigated by nude mice experiment. The associations between miR-5191/Notch-2 expression and clinicopathological features were analyzed. RESULTS: miR-5191 was downregulated in primary tumor tissues and SACC-LM cells. By targeting Notch-2, miR-5191 expression level affected the migration, invasion, and proliferation of SACC cells. Overexpression of miR-5191 inhibited the expression levels of Notch-2, followed by the decreased expression of c-Myc, Bcl-2, Hes-1, Hey-1, and Cyclin D1. In vivo, miR-5191 overexpression suppressed the SACC tumorigenesis and pulmonary metastasis in mice. In SACC patients, higher expression of miR-5191 was related to better prognoses and lower possibility of metastasis. CONCLUSIONS: miR-5191 acts as a tumor suppressor in SACC by targeting Notch-2.


Subject(s)
Carcinoma, Adenoid Cystic , MicroRNAs , Receptor, Notch2/metabolism , Salivary Gland Neoplasms , Animals , Carcinogenesis , Carcinoma, Adenoid Cystic/metabolism , Cell Line, Tumor , Cell Movement , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Salivary Gland Neoplasms/pathology
8.
J Mater Chem B ; 9(43): 8980-8993, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34494055

ABSTRACT

Bone tissue engineering (BTE) is a promising approach to recover insufficient bone in dental implantations. However, the clinical application of BTE scaffolds is limited by their low mechanical strength and lack of osteoinduction. In an attempt to circumvent these limitations and improve osteogenesis, we introduced magnetic iron oxide nanoparticles (IONPs) into a core-shell porous electrospun scaffold and evaluated their impact on the physical, mechanical, and biological properties of the scaffold. We used poly(lactic-co-glycolic acid)/polycaprolactone/beta-tricalcium phosphate (PPT) scaffolds with and without γ-Fe2O3 encapsulation, namely PPT-Fe scaffolds and PPT scaffolds, respectively. The γ-Fe2O3 used in the PPT-Fe scaffolds was coated with polyglucose sorbitol carboxymethylether and was biocompatible. Structurally, PPT-Fe scaffolds showed uniform iron distribution encapsulated within the resorbable PPT scaffolds, and these scaffolds supported sustainable iron release. Furthermore, compared with PPT scaffolds, PPT-Fe scaffolds showed significantly better physical and mechanical properties, including wettability, superparamagnetism, hardness, tensile strength, and elasticity modulus. In vitro tests of rat adipose-derived mesenchymal stem cells (rADSCs) seeded onto the scaffolds showed increased expression of integrin ß1, alkaline phosphatase, and osteogenesis-related genes. In addition, enhanced in vivo bone regeneration was observed after implanting PPT-Fe scaffolds in rat calvarial bone defects. Thus, we can conclude that the incorporation of IONPs into porous scaffolds for long-term release can provide a new strategy for BTE scaffold optimization and is a promising approach that can offer enhanced osteogenic capacity in clinical applications.


Subject(s)
Bone Regeneration , Coated Materials, Biocompatible/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Bone Regeneration/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Coated Materials, Biocompatible/pharmacology , Dose-Response Relationship, Drug , Male , Particle Size , Rats , Rats, Sprague-Dawley , Surface Properties
9.
Int J Nanomedicine ; 16: 5101-5115, 2021.
Article in English | MEDLINE | ID: mdl-34349510

ABSTRACT

INTRODUCTION: Promotion odontogenic differentiation of dental pulp stem cells (DPSCs) is essential for dentin regeneration. Physical cellular microenvironment is of critical importance for stem cells differentiation and influences the function of other biological/chemical factors to differentiation. METHODS: Based on adjusting the mechanical/interfacial properties of hydrogels, multicellular spheroids (MCSs) of DPSCs generated through self-organization. The spheroids were characterized by immunofluorescent staining and flow cytometry. Quantitative real-time polymerase chain reaction, alkaline phosphatase (ALP) activity assay, ALP staining and Alizarin Red S staining were performed to evaluate the osteogenic/odontogenic differentiation of DPSCs with or without magnetic iron oxide nanoparticles (IONPs) induction. RESULTS: MCSs of DPSCs exhibited a significant upregulation of E-cadherin and N-cadherin and enriched CD146 positive subpopulation, along with a stronger osteogenic/odontogenic differentiation ability. Moreover, DPSCs spheroids showed more substantial osteogenic differentiation tendency than the classical two-dimensional cultured DPSCs under the stimulation of magnetic IONPs. CONCLUSION: Three-dimensional spheroids culture of DPSCs based on composite viscoelastic materials combined with mechanical/magnetic stimulation may provide a theoretical basis for the subsequent development of dentin or bone regeneration technology.


Subject(s)
Cell Differentiation , Dental Pulp , Magnetite Nanoparticles , Osteogenesis , Stem Cells , Cell Proliferation , Cells, Cultured , Humans , Hydrogels , Spheroids, Cellular
10.
Shanghai Kou Qiang Yi Xue ; 30(1): 7-12, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33907771

ABSTRACT

PURPOSE: To provide theoretical basis for clinical CAD/CAM restorations with a comparison of the fracture strength between two chairside CAD/CAM immediate restorative materials (IPS e.max CAD and Vita Enamic) with different occlusal thickness in vitro. METHODS: IPS e.max CAD and Vita Enamic full-crowns with occlusal thicknesses 1.5/2.0/2.5 mm were fabricated with CEREC and adhesively seated to dies customized by manufacturer (n=42). All specimens were stored in distilled water at 37 ℃ for 24 h. Later, static fractural loading was performed. The fracture surface was observed through scanning electron microscope (SEM) and energy dispersive spectrum (EDS). The composites of two materials were detected by X-Ray diffraction (XRD) techniques. The results of fracture strength were analyzed by one-way ANOVA and t-test via SPSS 20.0 software package. RESULTS: With the increase of occlusal thickness, the fracture strength of IPS e.max CAD increased remarkably. However, the Vita Enamic's fracture strength remained the same with no significant difference. With the occlusal thickness increased from 1.5 to 2.0 mm, there was no significant difference in the fracture strength between IPS e.max CAD group and Vita Enamic group. As the thickness increased from 1.5 to 2.0 mm, the fracture strength of IPS e.max CAD group was significantly higher than that of Vita Enamic group. The results of SEM showed that the filler particles of IPS e.max CAD were smaller compared to that of Vita Enamic. Cone cracks were mainly found in the fracture surface of IPS e.max CAD, while radical cracks appeared in Vita Enamic. EDS showed the metal oxide and SiO2 in Vita Enmic was significantly higher than that in IPS e.max CAD. XRD showed that the primary crystal phase of IPS e.max CAD was lithium silicate, while Vita Enamic was amorphous. CONCLUSIONS: Both IPS e.max CAD and Vita Enamic can meet the standard of clinical application as the occlusal thickness reaches 1.5 mm. IPS e.max CAD showed better fracture resistance when the thickness was greater than 2.0 mm.


Subject(s)
Dental Porcelain , Flexural Strength , Ceramics , Computer-Aided Design , Materials Testing , Silicon Dioxide , Surface Properties
11.
J Geophys Res Atmos ; 126(1): 2020JD033842, 2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33552825

ABSTRACT

After a tropical storm makes landfall, its vortex interacts with the surrounding environment and the underlying surface. It is expected that diurnal variation over land will affect storm structures. However, this has not yet been explored in previous studies. In this paper, numerical simulation of postlandfall Tropical Storm Bill (2015) is conducted using a research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) model. Results indicate that during the storm's interaction with midlatitude westerlies over the Great Plains, the simulated storm with the SLAB land-surface scheme is stronger, with faster eastward movement and attenuation, and more asymmetric structures than that with the NOAH land-surface scheme. More symmetric structures correspond with a slower weakening and slower eastward movement of the storm over land. Further diagnoses suggest an obvious response of the storm's asymmetric structures to diurnal effects over land. Surface diabatic heating in the storm environment is important for the storm's symmetric structures and intensity over land. Specifically, during the transition from nighttime to daytime, the evident strengthening of convective instability, atmospheric baroclinicity, and the lateral advection of high θ e air in the storm environment, associated with the rapid increase in surface diabatic heating, are conducive to the development of vertical vorticity and storm-relative helicity, thus contributing to the maintenance of the storm's symmetric structures and intensity after landfall.

12.
J Mech Behav Biomed Mater ; 114: 104197, 2021 02.
Article in English | MEDLINE | ID: mdl-33221163

ABSTRACT

Atomic layer deposition (ALD) is a self-limiting nanoscale film deposition technology with the advantages of good stability, consistency and conformability. In this study, we proposed to deposit silica (SiO2) films over dental zirconium-oxide (ZrO2) by ALD for better SiO2 films and higher bond strength between ZrO2 and resin. To investigate the superiority of film deposited by ALD, other surface modification methods such as sol-gel, vapor phase hydrolysis and electrostatic self-assembly were compared in terms of the short-term and long-term bond strength between ZrO2 and resin, measured by universal testing machine. Meanwhile, the surface morphology and chemical elemental analysis were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FTIR). Results showed that the SiO2 films deposited by ALD or electrostatic self-assembly were uniform and consistent while sol-gel and vapor phase hydrolysis formed SiO2 films with cracks or pores, changing the morphology of ZrO2. ALD had the best results among all methods and increased the bond strength to 16.49 ± 1.60 MPa and 13.44 ± 1.63 MPa before and after aging respectively, which is expected to improve the long-term success rate of clinical dental ZrO2 prostheses.


Subject(s)
Dental Bonding , Silicon Dioxide , Adhesives , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , Zirconium
13.
J Biomater Appl ; 35(6): 569-578, 2021 01.
Article in English | MEDLINE | ID: mdl-32772779

ABSTRACT

The effect of implantable Zoledronate-PLGA microcapsules (PLGA-ZOL) in periodontitis remains unclear. In this study, we aimed to explore the potential role of PLGA-ZOL in protecting periodontitis and elucidate the underlying mechanism. A rat model of periodontitis was established by ligation the mandibular first molars, then PLGA-ZOL was implanted. The healing volume was scanned by cone-beam computed tomography. Cytokine levels in the gingival tissues were determined by ELISA and RT-PCR. Oxidative stress was indicated by detecting superoxide dismutase concentration and catalase activity. After periodontitis model was successfully established in rats, PLGA-ZOL treatment significantly attenuated alveolar bone loss, as indicated by the increased total healing volume, bone volume/tissue volume and osteoprotegerin level, as well as decreased sRANKL level. PLGA-ZOL treatment also suppressed the inflammatory activities by inhibiting pro-inflammatory cytokine production (TNF-α, IL-1ß) but increasing anti-inflammatory cytokine secretion (IL-10). Furthermore, PLGA-ZOL was found to ameliorate oxidative stress in gingival tissues. In conclusion, PLGA-ZOL microcapsules ameliorate alveolar bone loss, gingival inflammation and oxidative stress in an experimental rat model of periodontitis.


Subject(s)
Alveolar Bone Loss/drug therapy , Antioxidants/chemistry , Capsules/chemistry , Inflammation/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Zoledronic Acid/chemistry , Animals , Antioxidants/pharmacology , Catalase/metabolism , Cytokines/metabolism , Disease Models, Animal , Gingiva/metabolism , Humans , Osteoprotegerin/metabolism , Oxidative Stress/drug effects , Prosthesis Implantation , Rats , Superoxide Dismutase/metabolism , Zoledronic Acid/pharmacology
14.
J Mater Sci Mater Med ; 31(3): 29, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32140885

ABSTRACT

To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.


Subject(s)
Bone Marrow Cells/drug effects , Glass/chemistry , Mesenchymal Stem Cells/drug effects , Nanoparticles/chemistry , Osteogenesis/drug effects , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Calcium/chemistry , Cell Differentiation , Cell Proliferation , Cells, Cultured , Ions , Nanotechnology , Particle Size , Rats , Rats, Sprague-Dawley , Surface Properties
15.
Int J Nanomedicine ; 15: 497-511, 2020.
Article in English | MEDLINE | ID: mdl-32158207

ABSTRACT

INTRODUCTION: RNA-based therapy for bone repair and regeneration is a highly safe and effective approach, which has been extensively investigated in recent years. However, the molecular stability of RNA agents still remains insufficient for clinical application. High porosity, tunable size, and ideal biodegradability and biosafety are a few of the characters of mesoporous silicon nanoparticles (MSNs) that render them a promising biomaterial carrier for RNA treatment. MATERIALS AND METHODS: In this study, a novel miR-26a delivery system was constructed based on MSNs. Next, we assessed the miRNA protection of the delivery vehicles. Then, rat bone marrow mesenchymal stem cells (rBMSCs) were incubated with the vectors, and the transfection efficiency, cellular uptake, and effects on cell viability and osteogenic differentiation were evaluated. RESULTS: The results demonstrated that the vectors protected miR-26a from degradation in vitro and delivered it into the cytoplasm. A relatively low concentration of the delivery systems significantly increased osteogenic differentiation of rBMSCs. CONCLUSION: The vectors constructed in our study provide new methods and strategies for the delivery of microRNAs in bone tissue engineering.


Subject(s)
Cell Differentiation , Gene Transfer Techniques , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , Nanoparticles/chemistry , Osteogenesis/genetics , Animals , Biocompatible Materials/chemistry , Bone Marrow Cells/cytology , Cell Differentiation/genetics , Cell Survival/drug effects , Cells, Cultured , Imines/chemistry , Mesenchymal Stem Cells/physiology , Peptides/chemistry , Polyethylenes/chemistry , Porosity , Rats, Sprague-Dawley , Silicon Dioxide/chemistry , Transfection
16.
Front Pharmacol ; 11: 98, 2020.
Article in English | MEDLINE | ID: mdl-32174831

ABSTRACT

AIMS AND HYPOTHESIS: Epidermal growth factor (EGF) has been shown to induce the migration of various cancer cells. However, the underlying signaling mechanisms for EGF-induced migration of oral squamous cell carcinoma (OSCC) remain to be elucidated. WNT7A, a member of the family of 19 Wnt secreted glycoproteins, is commonly associated with tumor development. It is mostly unknown whether and, if so, how EGF modulates WNT7A in OSCC cells. The role of WNT7A in OSCC was thus investigated to explore the underlying signaling mechanisms for EGF-induced migration of OSCC. METHODS: Cell migration was measured by Wound healing assay and Transwell assay. Western blotting was carried out to detect the expression of WNT7A, MMP9, ß-catenin, p-AKT, and p-ERK. The cells were transfected with plasmids or siRNA to upregulate or downregulate the expression of WNT7A. The location of ß-catenin was displayed by immunofluorescence microscopy. Immunohistochemistry was carried out to confirm the relation between WNT7A expression and OSCC progression. RESULTS: The present study showed that the levels of WNT7A mRNA and protein were increased by EGF stimulation in OSCC cells. Besides, it was proved that p-AKT, but not p-ERK, mediated the expression of WNT7A protein induced by EGF. Furthermore, the inhibition of AKT activation prevented the EGF-induced increase of WNT7A and matrix metallopeptidase 9 (MMP9) expression and translocation of ß-catenin from the cytoplasm to the nucleus. Moreover, histological analysis of OSCC specimens revealed an association between WNT7A expression and poor clinical prognosis of the disease. CONCLUSIONS: The data in this paper indicated that WNT7A could be a potential oncogene in OSCC and identified a novel PI3K/AKT/WNT7A/ß-catenin/MMP9 signaling for EGF-induced migration of OSCC cells.

17.
ACS Appl Mater Interfaces ; 11(41): 37381-37396, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31517483

ABSTRACT

Biodegradable synthetic scaffolds hold great promise for oral and craniofacial guided tissue regeneration and bone regeneration. To overcome the limitations of current scaffold materials in terms of osteogenic and antimicrobial properties, we have developed a novel silver-modified/collagen-coated electrospun poly-lactic-co-glycolic acid/polycaprolactone (PLGA/PCL) scaffold (PP-pDA-Ag-COL) with improved antimicrobial and osteogenic properties. Our novel scaffold was generated by electrospinning a basic PLGA/PCL matrix, followed by silver nanoparticles (AgNPs) impregnation via in situ reduction, polydopamine coating, and then coating by collagen I. The three intermediate materials involved in the fabrication of our scaffolds, namely, PLGA/PCL (PP), PLGA/PCL-polydopamine (PP-pDA), and PLGA/PCL-polydopamine-Ag (PP-pDA-Ag), were used as control scaffolds. Scanning electron micrographs and mechanical testing indicated that the unique three-dimensional structures with randomly oriented nanofibrous electrospun scaffold architectures, the elasticity modulus, and the tensile strength were maintained after modifications. CCK-8 cell proliferation analysis demonstrated that the PP-pDA-Ag-COL scaffold was associated with higher MC3T3 proliferation rates than the three control scaffolds employed. Scanning electron and fluorescence light microscopy illustrated that PP-pDA-Ag-COL scaffolds significantly enhanced MC3T3 cell adhesion compared to the control scaffolds after 12 and 24 h culture, in tandem with the highest ß1 integrin expression levels, both at the mRNA level and the protein level. Alkaline phosphatase activity, BMP2, and RUNX2 expression levels of MC3T3 cells cultured on PP-pDA-Ag-COL scaffolds for 7 and 14 days were also significantly higher when compared to controls (P < 0.001). There was a wider antibacterial zone associated in PP-pDA-Ag-COL and PP-pDA-Ag scaffolds versus control scaffolds (P < 0.05), and bacterial fluorescence was reduced on the Ag-modified scaffolds after 24 h inoculation against Staphylococcus aureus and Streptococcus mutans. In a mouse periodontal disease model, the PP-pDA-Ag-COL scaffold enhanced alveolar bone regeneration (31.8%) and was effective for periodontitis treatment. These results demonstrate that our novel PP-pDA-Ag-COL scaffold enhanced biocompatibility and osteogenic and antibacterial properties and has therapeutic potential for alveolar/craniofacial bone regeneration.


Subject(s)
Anti-Bacterial Agents , Bone Regeneration/drug effects , Coated Materials, Biocompatible , Materials Testing , Osteogenesis/drug effects , Periodontitis/therapy , Staphylococcus aureus/growth & development , Streptococcus mutans/growth & development , Tissue Scaffolds/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Collagen/chemistry , Collagen/pharmacology , Disease Models, Animal , Guided Tissue Regeneration , Mice , Periodontitis/pathology , Polyesters/chemistry , Polyesters/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Silver/metabolism , Silver/pharmacology
18.
Mater Sci Eng C Mater Biol Appl ; 104: 109955, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31500064

ABSTRACT

Calcium phosphate cement (CPC), functionalized with iron oxide nanoparticles (IONP), is of great promise to promote osteoinduction and new bone formation. In this work, the IONP powder was added into the CPC powder to fabricate CPC + IONP scaffolds and the effects of the novel composite on bone matrix formation and osteogenesis of human dental pulp stem cells (hDPSCs) were explored. A series of CPC + IONP magnetic scaffolds with different IONP contents (1%, 3% and 6%) were fabricated using 5% chitosan solution as the cement liquid. Western blotting and RT-PCR were used to analyze the signaling pathway. The IONP incorporation substantially enhanced the performance of CPC + IONP, with increases in both mechanical strength and cellular activities. The IONP addition greatly promoted the osteogenesis of hDPSCs, elevating the ALP activity, the expression of osteogenic marker genes and bone matrix formation with 1.5-2-fold increases. The 3% IONP incorporation showed the most enhancement among all groups. Activation of the extracellular signal-related kinases WNT/ß-catenin in DPSCs was observed, and this activation was attenuated by the WNT inhibitor DKK1. The results indicated that the osteogenic behavior of hDPSCs was likely driven by CPC + IONP via the WNT signaling pathway. In conclusion, incorporate IONP into CPC scaffold remarkably enhanced the spreading, osteogenic differentiation and bone mineral synthesis of stem cell. Therefore, this method had great potential for bone tissue engineering. The novel CPC + IONP composite scaffolds with stem cells are promising to provide an innovative strategy to enhance bone regenerative therapies.


Subject(s)
Bone Cements/chemistry , Bone Cements/pharmacology , Calcium Phosphates/chemistry , Ferric Compounds/chemistry , Nanoparticles/chemistry , Osteogenesis/drug effects , Signal Transduction/drug effects , Stem Cells/drug effects , Bone Regeneration/drug effects , Bone and Bones/drug effects , Cell Differentiation/drug effects , Chitosan/chemistry , Dental Cements/chemistry , Dental Pulp/drug effects , Dental Pulp/metabolism , Humans , Stem Cells/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Wnt Proteins/metabolism , beta Catenin/metabolism
19.
Nanomedicine ; 21: 102069, 2019 10.
Article in English | MEDLINE | ID: mdl-31351236

ABSTRACT

The objectives of this study were to incorporate iron oxide nanoparticles (IONPs) into calcium phosphate cement (CPC) to enhance bone engineering, and to investigate the effects of IONPs as a liquid or powder on stem cells using IONP-CPC scaffold for the first time. IONP-CPCs were prepared by adding 1% IONPs as liquid or powder. Human dental pulp stem cells (hDPSCs) were seeded. Subcutaneous implantation in mice was investigated. IONP-CPCs had better cell spreading, and greater ALP activity and bone mineral synthesis, than CPC control. Subcutaneous implantation for 6 weeks showed good biocompatibility for all groups. In conclusion, incorporating IONPs in liquid or powder form both substantially enhanced hDPSCs on IONP-CPC scaffold and exhibited excellent biocompatibility. IONP incorporation as a liquid was better than IONP powder in promoting osteogenic differentiation of hDPSCs. Incorporating IONPs and chitosan lactate together in CPC enhanced osteogenesis of hDPSCs more than using either alone.


Subject(s)
Calcium Phosphates , Cells, Immobilized , Dental Pulp/metabolism , Ferric Compounds , Nanoparticles/chemistry , Osteogenesis , Stem Cell Transplantation , Stem Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cells, Immobilized/cytology , Cells, Immobilized/metabolism , Cells, Immobilized/transplantation , Dental Pulp/cytology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Heterografts , Humans , Male , Mice , Stem Cells/cytology
20.
J Mater Sci Mater Med ; 30(6): 70, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31168668

ABSTRACT

The purpose of this study is to analyze various surface grafting modifications of fiberglass-reinforced resin based composite piles. In addition, the effects of surface modifications of fiberglass-reinforced resin piles in terms of biosafety and mechanical strength were studied. According to different surface treatment methods, the fiberglass was divided into five groups (A-E): a blank control group, a KH570 processing group, a KH570 processing+Bis-GMA grafting 1 h group, a KH570 processing+Bis-GMA grafting 3 h group and a KH570 processing+Bis-GMA grafting 7 h group. All surface-treated materials were characterized using scanning electron microscope, thermogravimetric analyses and Fourier transform infrared spectrum and mechanical testing using a universal mechanical tester. The biosafety was evaluated by cell viability experiments and repeated oral toxicity tests and Ames tests. The Bis-GMA grafting modification further enhanced the mechanical properties of resin piles. By increasing the grafting time, the grafting effect and mechanical properties were further enhanced. The surfaces grafted for 7 h (Group E) remarkably improved the mechanical properties (flexural strength ~696.24 MPa; flexural load ~185.67N). The graft modifications improved the mechanical properties of fiber pile resin-based materials. The prolonged grafting time further improved the mechanical properties corresponding to enhanced grafting and the formation of a stable interface between fibers and the resin matrix. The surface-modified dental resin-based fiber did not show any signs of toxicity, cytotoxicity or mutagenicity, suggesting the potential biological safety of these materials in the clinical practice.


Subject(s)
Composite Resins/chemistry , Containment of Biohazards , Dental Materials , Endodontics/methods , Glass/chemistry , Polymethacrylic Acids/chemistry , Animals , Bisphenol A-Glycidyl Methacrylate/chemistry , Elastic Modulus , Fibroblasts/metabolism , Humans , Materials Testing , Mice , Mutagenicity Tests , Resins, Synthetic , Salmonella typhimurium , Silanes , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Surface Properties , Temperature , Tensile Strength , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...