Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Front Genet ; 11: 634195, 2020.
Article in English | MEDLINE | ID: mdl-33584821

ABSTRACT

Background: Breast cancer (BC) is one of the most frequently diagnosed malignancies among females. As a huge heterogeneity of malignant tumor, it is important to seek reliable molecular biomarkers to carry out the stratification for patients with BC. We surveyed immune- associated lncRNAs that may be used as potential therapeutic targets in BC. Methods: LncRNA expression data and clinical information of BC patients were downloaded from the TCGA database for a comprehensive analysis of candidate genes. A model consisting of immune-related lncRNAs enriched in BC cancerous tissues was established using the univariate Cox regression analysis and the iterative Lasso Cox regression analysis. The prognostic performance of this model was validated in two independent cohorts (GSE21653 and BC-KR), and compared with known prognostic biomarkers. A nomogram that integrated the immune-related lncRNA signature and clinicopathological factors was constructed to accurately assess the prognostic value of this signature. The correlation between the signature and immune cell infiltration in BC was also analyzed. Results: The Kaplan-Meier analysis showed that the OS of Patients in the low-risk group had significantly better survival than those in the high-risk group, Clinical subgroup analysis showed that the predictive ability was independent of clinicopathological factors. Univariate/multivariate Cox regression analysis showed immune lncRNA signature is an important prognostic factor and an independent prognostic marker. In addition, GSEA and GSVA analysis as well as comprehensive analysis of immune cells showed that the signature was significantly correlated with the infiltration of immune cells. Conclusion: We successfully constructed an immune-associated lncRNA signature that can accurately predict BC prognosis.

2.
Front Microbiol ; 8: 1168, 2017.
Article in English | MEDLINE | ID: mdl-28694798

ABSTRACT

Subgroup J avian leukosis virus (ALV-J), a typical retrovirus, is characterized of existence of a cloud of diverse variants and considerable genetic diversity. Previous studies describing the evolutionary dynamics of ALV-J genetic variants mainly focused on the early infection period or few randomly selected clones. Here, we inoculated 30 specific-pathogen-free chickens with the same founder ALV-J stock of known genetic background. Six (three antibody positive and three antibody negative) chickens were selected among 15 chickens with viremia. Viruses were serially isolated in 36 weeks and then sequenced using MiSeq high-throughput sequencing platform. This produced the largest ALV-J dataset to date, composed of more than three million clean reads. Our results showed that host humoral immunity could greatly enhance the genetic diversity of ALV-J genetic variants. In particular, selection pressures promoted a dynamic proportional changes in ALV-J genetic variants frequency. Cross-neutralization experiment showed that along with the change of the dominant variant, the antibody titers specific to infectious clones corresponding to the most dominant variants in weeks 12 and 28 have also changed significantly in sera collected in weeks 16 and 32. In contrast, no shift of dominant variant was observed in antibody-negative chickens. Moreover, we identified a novel hypervariable region in the gp85 gene. Our study reveals the interaction between ALV-J and the host, which could facilitate the development of vaccines and antiviral drugs.

3.
Bing Du Xue Bao ; 31(4): 341-7, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26524905

ABSTRACT

We used a meq-deleted attenuated MDV-I strain GX0101Δmeq as a vector to construct a recombinant virus expressing the exogenous gene NDV-F. The ORF of exogenous gene NDV-F was inserted into the eukaryotic expression vector pcDNA3.1(-). Then, the expression cassette of NDV-F which contains the CMV promoter was amplified. Simultaneously, we amplified the selected gene Kan+ expression cassette and inserted them into the PMD18-T vector. Tandem expression cassettes were amplified using primers containing the 50-bp homologous arm of MDV-US2. The PCR product was electroporated into EL250 host bacteria containing GX0101Δmeq. Then, the Kan+ expression cassette was deleted from the recombinant virus genome using 1% arabinose. The plasmid of the positive clone which the Kan+ expression cassette was deleted was extracted and transfected into CEFs to rescue the recombinant virus. The recombinant virus was injected into chickens to observe its growth and replication. The recombinant virus rMDV-F containing the exogenous gene NDV-F was rescued successfully. The recombinant virus could duplicate and express well in CEFs, and grow and replicate well in chickens. Using GX0101Δmeq as a vector, combined with a recombinant system of Red E/T and FLP/FRT, we constructed a recombinant virus that expressed the exogenous gene NDV-F. This study could lay the foundation for further study of recombinant viruses.


Subject(s)
Chickens/virology , DNA, Recombinant/genetics , Genetic Engineering , Mardivirus/genetics , Mardivirus/physiology , Viral Proteins/genetics , Virus Replication , Animals , Cell Line , Gene Expression , Genetic Vectors/genetics , Plasmids/genetics
4.
J Virol Methods ; 207: 138-45, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25034124

ABSTRACT

Over the last two decades, much attention has been paid to MDV-vectored recombinant vaccines. Many factors have influenced their protective efficacy, and insertion site has been among the main influential factors for the expression of foreign genes in recombinant Marek's disease virus (rMDV). To compare the transcriptional activity of different sites of rMDV, an H9N2 avian influenza virus hemagglutinin gene (AIV-H9N2-HA) expression cassette that used the bi-directional promoter of serotype 1 MDV (MDV1) in the 1.8kb RNA transcript direction (p1.8kb) as a promoter was inserted into 4 different regions of MDV using the bacterial artificial chromosome (BAC) vector and FLP/FRT recombination technique. The insertion regions included 3 of its own sites (US2, US10 and one of Meq genes) in the MDV genome and a foreign site (gpt gene) in the BAC vector. Quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to analyze and compare the H9N2-HA expression levels of these different rMDVs both at the mRNA level and at the protein level. The results indicated that among the four tested insertion regions, the HA expression cassette in the US2 region demonstrated the highest activity, followed by that in the Meq region, which was almost equal to that of US10. Further, the expression cassette had the lowest activity in the foreign region gpt gene. The above data could be useful for choosing proper recombinant insertion regions in the construction of rMDV to express different foreign genes, and it is a prerequisite for developing effective MDV-vectored recombinant vaccines.


Subject(s)
Gene Expression , Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H9N2 Subtype/genetics , Mardivirus/genetics , Animals , Cells, Cultured , Chickens , Enzyme-Linked Immunosorbent Assay , Fibroblasts/virology , Gene Expression Profiling , Genetic Vectors , Real-Time Polymerase Chain Reaction , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
5.
J Virol Methods ; 206: 119-27, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24893109

ABSTRACT

On the basis of recent studies, much attention has been given to recombinant MDV (rMDV)-based vaccines. During the construction of rMDV, the activity of promoters to transcribe foreign genes is one of the major factors that can affect protective efficacy. To investigate the transcription activity and efficacy of five different promoters, the advantage of an existing rMDV BAC infectious clone that had been previously constructed was used to construct rMDVs. The expression cassette of the hemagglutinin gene (HA) from a low pathogenic avian influenza virus (LPAIV) H9N2 strain was inserted into the US2 region under five selected promoters. These five promoters included three MDV endogenous promoters (the promoter for the gB gene and a bi-directional promoter in both directions for pp38 (ppp38) and 1.8 kb RNA transcripts (p1.8 kb)), and two exogenous promoters (CMV and SV40). Among these five promoters, the CMV promoter demonstrated the highest activity, followed by p1.8 kb and SV40, which had a similar transcriptional activity level. Two of the MDV endogenous promoters showed much lower transcriptional activities, particularly the promoter ppp38, which had the lowest activity. The results of the in vivo experiment proved that none of the three recombinant viruses of rGX-CMV-HA, rGX-SV40-HA and rGX-p1.8kb-HA provided protection in SPF chickens. Chickens vaccinated with rGX-pPP38-HA induced 50% and rGX-gB-HA induced 25% protection against the challenge with H9N2, respectively.


Subject(s)
Chromosomes, Artificial, Bacterial , Gene Expression , Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis , Influenza A Virus, H9N2 Subtype/genetics , Mardivirus/genetics , Promoter Regions, Genetic , Transcription, Genetic , Animals , Chickens , Cytomegalovirus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Simian virus 40/genetics
6.
J Biotechnol ; 181: 45-54, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24709399

ABSTRACT

To develop a recombinant Marek's disease virus (rMDV1) co-expressing the hemagglutinin gene (HA) and neuramidinase gene (NA) from a low pathogenic avian influenza virus (LPAIV) H9N2 strain and lacking the meq oncogene that shares homology with the Jun/Fos family of transcriptional factors, a wild strain of MDV GX0101 was used as parental virus, the HA and NA genes co-expression cassette under control of the CMV and SV40 early promoters was inserted at two meq sites of GX0101 to form a new meq knock-out mutant MDV (MZC12HA/NA) through homologous recombination. MZC12HA/NA was reconstituted by transfection of recombinant BAC-MDV DNA into the secondary chicken embryo fibroblast (CEF) cells. Highly purified MZC12HA/NA was obtained after four rounds of plaque purification and proliferation. In vitro growth properties of recombinant virus were also inspected and concluded that the MZC12HA/NA had the same growth kinetics in CEF cultures as its parental wild type virus GX0101. Southern blot indicated that co-expression cassette was successfully inserted at two copies sites of meq gene, so two meq genes were knocked-out completely. RT-qPCR showed transcription and expression levels of the HA and NA genes were both significantly higher than that of GX0101 own pp38 gene. Indirect fluorescence antibody (IFA) test, and Western blot analyses indicated that HA and NA genes were co-expressed simultaneously under control of the different promoters but meq genes were not. These results herald a new and effective recombinant meq-deleted MDV-based AIV-H9N2 vaccine may be useful in protecting chickens from very virulent MDV and H9N2 challenges.


Subject(s)
Hemagglutinins/biosynthesis , Herpesvirus 2, Gallid/genetics , Marek Disease/genetics , Neuraminidase/biosynthesis , Oncogene Proteins, Viral/genetics , Animals , Chick Embryo , Chickens/genetics , Chickens/virology , Gene Expression Regulation, Viral , Hemagglutinins/genetics , Influenza A Virus, H9N2 Subtype/genetics , Marek Disease/virology , Neuraminidase/genetics , Promoter Regions, Genetic
7.
PLoS One ; 9(3): e90677, 2014.
Article in English | MEDLINE | ID: mdl-24599338

ABSTRACT

To qualitatively analyze and evaluate a bi-directional promoter transcriptional function in both transient and transgenic systems, several different plasmids were constructed and recombinant MDV type 1 strain GX0101 was developed to co-express a Neuraminidase (NA) gene from Avian Influenza Virus H9N2 strain and a Fusion (F) gene from the Newcastle disease virus (NDV). The two foreign genes, NDV-F gene and AIV-NA gene, were inserted in the plasmid driven in each direction by the bi-directional promoter. To test whether the expression of pp38/pp24 heterodimers are the required activators for the expression of the foreign genes, the recombinant plasmid pPpp38-NA/1.8kb-F containing expression cassette for the two foreign genes was co-transfected with a pp38/pp24 expression plasmid, pBud-pp38-pp24, in chicken embryo fibroblast (CEF) cells. Alternatively, plasmid pPpp38-NA/1.8kb-F was transfected in GX0101-infected CEFs where the viral endogenous pp38/pp24 were expressed via virus infection. The expression of both foreign genes was activated by pp38/pp24 dimers either via virus infection, or co-expression. The CEFs transfected with pPpp38-NA/1.8kb-F alone had no expression. We chose to insert the expression cassette of Ppp38-NA/1.8kb-F in the non-essential region of GX0101ΔMeq US2 gene, and formed a new rMDV named MZC13NA/F through homologous recombination. Indirect fluorescence antibody (IFA) test, ELISA and Western blot analyses indicated that F and NA genes were expressed simultaneously under control of the bi-directional promoter, but in opposite directions. The data also indicated the activity of the promoter in the 1.8-kb mRNA transcript direction was higher than that in the direction for the pp38 gene. The expression of pp38/pp24 dimers either via co-tranfection of the pBud-pp38-pp24 plasmid, or by GX0101 virus infection were critical to activate the bi-directional promoter for expression of two foreign genes in both directions. Therefore, the confirmed function of the bi-directional promoter provides better feasibilities to insert multiple foreign genes in MDV genome based vectors.


Subject(s)
Genes, Viral/genetics , Influenza A Virus, H9N2 Subtype/genetics , Mardivirus/genetics , Newcastle disease virus/genetics , Promoter Regions, Genetic , Recombination, Genetic/genetics , Animals , Base Sequence , Chick Embryo , Fibroblasts/virology , Fluorescent Antibody Technique, Indirect , Influenza A Virus, H9N2 Subtype/enzymology , Marek Disease/virology , Molecular Sequence Data , Mutagenesis, Insertional/genetics , Neuraminidase/genetics , Protein Multimerization , Real-Time Polymerase Chain Reaction , Reference Standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...