Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 570
Filter
1.
Mol Biotechnol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850457

ABSTRACT

Long intergenic non-coding RNA 239 (Linc00239) acts as an oncogene in colorectal cancer (CRC), esophageal squamous cell carcinoma, and acute myeloid leukemia cells. However, its role and regulatory mechanisms in clear cell renal cell carcinoma (ccRCC) remain unknown. We used StarBase and The Cancer Genome Atlas databases to evaluate Linc00239 expression and its effect on ccRCC. Furthermore, the function of Linc00239 in ccRCC proliferation and metastasis was analyzed using Cell Counting Kit-8 and Transwell assays following Linc00239 knockdown. Subsequently, the Linc00239-miRNA-mRNA regulatory associations were selected based on miRanda, miTarbase, and previous references, and their expression levels and binding relationship were further validated using quantitative real-time polymerase chain reaction, western blotting and dual-luciferase reporter gene assay. Additionally, we transfected a miRNA inhibitor to evaluate whether the miR-204-5p/RAB22A (Ras-related proteins in brain 22a) axis was involved in Linc00239 function. Linc00239 was elevated in ccRCC and correlated with poor prognosis. Linc00239 knockdown inhibited ccRCC progression. Additionally, Linc00239 inhibition elevated miR-204-5p expression and repressed RAB22A levels. Moreover, miR-204-5p inhibitors attenuated this inhibitory effect on proliferation, migration, invasion, and RAB22A level when Linc00239 was knocked down. Linc00239 promotes ccRCC proliferation and metastasis by elevating RAB22A expression through the adsorption of miR-204-5p, which provides a clue for the diagnosis and treatment of ccRCC.

2.
Appl Environ Microbiol ; : e0066224, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752833

ABSTRACT

Fungal-bacterial consortia enhance organic pollutant removal, but the underlying mechanisms are unclear. We used stable isotope probing (SIP) to explore the mechanism of bioaugmentation involved in polycyclic aromatic hydrocarbon (PAH) biodegradation in petroleum-contaminated soil by introducing the indigenous fungal strain Aspergillus sp. LJD-29 and the bacterial strain Pseudomonas XH-1. While each strain alone increased phenanthrene (PHE) degradation, the simultaneous addition of both strains showed no significant enhancement compared to treatment with XH-1 alone. Nonetheless, the assimilation effect of microorganisms on PHE was significantly enhanced. SIP revealed a role of XH-1 in PHE degradation, while the absence of LJD-29 in 13C-DNA indicated a supporting role. The correlations between fungal abundance, degradation efficiency, and soil extracellular enzyme activity indicated that LJD-29, while not directly involved in PHE assimilation, played a crucial role in the breakdown of PHE through extracellular enzymes, facilitating the assimilation of metabolites by bacteria. This observation was substantiated by the results of metabolite analysis. Furthermore, the combination of fungus and bacterium significantly influenced the diversity of PHE degraders. Taken together, this study highlighted the synergistic effects of fungi and bacteria in PAH degradation, revealed a new fungal-bacterial bioaugmentation mechanism and diversity of PAH-degrading microorganisms, and provided insights for in situ bioremediation of PAH-contaminated soil.IMPORTANCEThis study was performed to explore the mechanism of bioaugmentation by a fungal-bacterial consortium for phenanthrene (PHE) degradation in petroleum-contaminated soil. Using the indigenous fungal strain Aspergillus sp. LJD-29 and bacterial strain Pseudomonas XH-1, we performed stable isotope probing (SIP) to trace active PHE-degrading microorganisms. While inoculation of either organism alone significantly enhanced PHE degradation, the simultaneous addition of both strains revealed complex interactions. The efficiency plateaued, highlighting the nuanced microbial interactions. SIP identified XH-1 as the primary contributor to in situ PHE degradation, in contrast to the limited role of LJD-29. Correlations between fungal abundance, degradation efficiency, and extracellular enzyme activity underscored the pivotal role of LJD-29 in enzymatically facilitating PHE breakdown and enriching bacterial assimilation. Metabolite analysis validated this synergy, unveiling distinct biodegradation mechanisms. Furthermore, this fungal-bacterial alliance significantly impacted PHE-degrading microorganism diversity. These findings advance our understanding of fungal-bacterial bioaugmentation and microorganism diversity in polycyclic aromatic hydrocarbon (PAH) degradation as well as providing insights for theoretical guidance in the in situ bioremediation of PAH-contaminated soil.

3.
Virology ; 596: 110101, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38754335

ABSTRACT

This study characterizes a newly isolated Demerecviridae phage, named vB_SalS_PSa2, belonging to the phage T5 group. The main variations between vB_SalS_PSa2 and T5 concern structural proteins related to morphology and host recognition. vB_SalS_PSa2 is infective to 19 out of the 25 tested Salmonella enterica (including the rare "Sendai" and "Equine" serotypes) and Escherichia coli isolates, most of them being multidrug resistant. vB_SalS_PSa2 displayed good thermal stability (4-60 °C) and broad pH stability (4.0-12.0). It also exhibited antibacterial activity against S. enterica sv. Paratyphi A Enb50 at 4 °C in milk during the whole tested period (5 d), and for 3-6 h at both 25 and 37 °C. Furthermore, vB_SalS_PSa2 was able to inhibit biofilm formation and to show degradation activity on mature biofilms of E. coli K12 and S. enterica sv. Paratyphi Enb50 in both LB and milk. Altogether, these results indicate that phage vB_SalS_PSa2 is a valuable candidate for controlling foodborne S. enterica and E. coli pathogens.

4.
Sci Rep ; 14(1): 11825, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783017

ABSTRACT

In the United States (US), chlamydia is the most frequently reported sexually transmitted infection that is nationally notifiable. We examined trends in chlamydia prevalence in the US in 2011-2016 compared with 2005-2010. Cross-sectional, nationally representative surveys, National Health and Nutrition Examination Surveys (NHANES), were used to compare national chlamydia prevalence estimates from 2011 to 2016 with those from 2005 to 2010, and changes in prevalence since 1999-2004 were also reviewed. Persons aged 18-39 years were included in these analyses. Prevalence of chlamydia was based on results from urine specimens. Results were weighted to represent the U.S. civilian, noninstitutionalized population. The baseline characteristics of the study population were similar in gender, age and race/ethnicity between the two groups (P > 0.05). The overall chlamydia prevalence was 1.88% (95% confidence interval [CI] 1.55-2.22%) in 2011-2016 and 1.57% (95% CI 1.27-1.87%) in 2005-2010, a relative increase of 19.7% (95% CI 0.2-39.2%; P < 0.05) between the two surveys. Increases in chlamydia prevalence was especially concentrated in persons who were male, aged 18 to 29 years, had > high school educational level, never married, age at first sex < 18 years, had 2-5 sexual partners in lifetime and had no past sexually transmitted diagnosis between 2005 and 2016 (P < 0.05). Multivariable logistic regression analysis demonstrated that chlamydia was more prevalent in those aged 18-29 years, being non-Hispanic Blacks, had high school educational level, being widowed/divorced/separated and had > 5 sexual partners. The chlamydia prevalence had an increasing trend from 2005-2010 to 2011-2016. Those with high chlamydia prevalence such as sexually active young adults and Non-Hispanic Black should be screened annually so that infected persons can be diagnosed and they and their sex partners can be treated promptly.


Subject(s)
Chlamydia Infections , Humans , United States/epidemiology , Chlamydia Infections/epidemiology , Chlamydia Infections/microbiology , Male , Female , Adult , Adolescent , Prevalence , Young Adult , Cross-Sectional Studies , Nutrition Surveys
5.
Chemosphere ; 359: 142324, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740339

ABSTRACT

Seawater warming, ocean acidification and chemical pollution are the main threats to coral growth and even survival. The legacy persistent organic contaminants (POCs), such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the emerging contaminants, including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DPs) and novel brominated flame retardants (NBFRs) were studied in corals from Luhuitou fringing reef in Sanya Bay and Yongle atoll in Xisha Islands, the South China Sea (SCS). Total average concentrations of ∑16PAHs, ∑23OCPs, ∑34PCBs, ∑8PBDEs, ∑2DPs and ∑5NBFRs in 20 coral species (43 samples) from the SCS were 40.7 ± 34.6, 5.20 ± 5.10, 0.197 ± 0.159, 3.30 ± 3.70, 0.041 ± 0.042 and 36.4 ± 112 ng g-1 dw, respectively. PAHs and NBFRs were the most abundant compounds and they are likely to be dangerous pollutants for future coral growth. Compared to those found in other coral reef regions, these pollutants concentrations in corals were at low to median levels. Except for PBDEs, POCs in massive Porites were significantly higher than those in branch Acropora and Pocillopora (p < 0.01), as large, closely packed corals may be beneficial for retaining more pollutant. The current study contributes valuable data on POCs, particularly for halogenated flame retardants (HFRs, including PBDEs, DPs and NBFRs), in corals from the SCS, and will improve our knowledge of the occurrence and fate of these pollutants in coral reef ecosystems.


Subject(s)
Anthozoa , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Hydrocarbons, Chlorinated , Persistent Organic Pollutants , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Seawater , Water Pollutants, Chemical , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , China , Halogenated Diphenyl Ethers/analysis , Flame Retardants/analysis , Seawater/chemistry , Polychlorinated Biphenyls/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Coral Reefs , Oceans and Seas
6.
Environ Res ; 255: 119087, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38719064

ABSTRACT

Pesticides play a crucial role in securing global food production to meet increasing demands. However, because of their pervasive use, they are now ubiquitous environmental pollutants that have adverse effects on both ecosystems and human health. In this study, the environmental occurrence and fate of 16 current-use pesticides (CUPs) were investigated in 93 forest soil samples obtained from 11 distinct mountains in China. The concentrations of the target pesticides ranged from 0.36 to 55 ng/g dry weight. Cypermethrin, dicofol, chlorpyrifos, chlorothalonil, and trifluralin were the most frequently detected CUPs. The CUP concentrations were generally higher in the O-horizon than in the A-horizon. Chlorpyrifos, chlorothalonil, and dicofol were detected in most deep layers in soil profiles from three mountains selected to represent distinct climate zones. No clear altitudinal trend in organic carbon-normalized concentrations of CUPs was observed in the O- or A-horizons within individual mountains. A negative correlation was noted between the CUP concentrations and the altitudes across all sampling sites. This indicated that proximity to emission sources was a key factor affecting the spatial distribution of CUPs in mountain forest soil on a national scale. The ecological risk assessment showed that dicofol and cypermethrin pose potential risks to earthworms. This study emphasizes the importance of source control when setting management strategies for CUPs.


Subject(s)
Environmental Monitoring , Forests , Pesticides , Soil Pollutants , China , Soil Pollutants/analysis , Pesticides/analysis , Soil/chemistry
7.
Environ Pollut ; 355: 124216, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38797350

ABSTRACT

The Three Gorges Reservoir (TGR) is totally manmade, strongly influenced by anthropogenic activity, and lies on the upper reaches of Yangtze River. The periodic storage and discharge of water from the Three Gorges Dam could have altered the original air-plant/soil interactions of contaminants in TGR. Herein, paired atmospheric gas-particle, air-plant, and air-soil samples were collected to investigate the air-plant interaction and air-soil exchange of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The air-plant interaction based on McLachlan's framework to our datasets suggests that PAHs were absorbed via gaseous deposition that was restricted by the plant-gas dynamic equilibrium. The equilibrium indicates a dynamic balance between the gaseous phase and plant surface in PAH absorption. The main limiting factor influencing the PAH uptake was the plant species rather than the atmospheric PAH concentration. The air-soil exchange of PAHs exhibited a net volatilization flux of 16.71 ng/m2/d from the soil to the air based on annual average. There was more volatilization and less deposition in summer and more deposition and less volatilization in autumn and winter. The soil serves as a secondary source of atmospheric PAHs. As the first attempt on probing the multi-interface geochemical process of PAHs, this study highlights the influence of manual water level manipulation from the TGD and environmental factors (such as temperature, humidity, and soil properties) on the regional fate of PAHs in the TGR.


Subject(s)
Air Pollutants , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil , Polycyclic Aromatic Hydrocarbons/analysis , China , Air Pollutants/analysis , Soil/chemistry , Soil Pollutants/analysis , Plants/metabolism , Water Pollutants, Chemical/analysis , Humans
8.
Environ Pollut ; 355: 124259, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810680

ABSTRACT

The global increase in electronic waste (e-waste) has led to a rise in informal recycling, emitting hazardous heavy metals (HMs) that threaten human health and ecosystems. This study presents the first comprehensive assessment of HM levels in dry deposition and soils at proximity of forty (40) informal e-waste recycling sites across Pakistan, between September 2020 to December 2021. Findings reveal that Zn (1410), Pb (410) and Mn (231) exhibited the higher mean deposition fluxes (µg/m2.day), derived from air samples, particularly in Karachi. Similarly, soils showed higher mean concentrations (µg/g dw) of Mn (477), Cu (514) and Pb (172) in Faisalabad, Lahore, and Karachi, respectively. HMs concentrations were found higher in winter or autumn and lower in summer. In addition, HM levels were significantly (p = 0.05) higher at recycling sites compared to background sites year-round, highlighting the e-waste recycling operations as the major source of their emissions. The Igeo index indicated moderate to extremely contaminated levels of Cu, Pb, Cd, and Ni in Karachi, Lahore and Gujranwala. Ingestion was found as a leading human exposure route, followed by dermal and inhalation exposure, with Pb posing the greatest health risk. The Cumulative Incremental Lifetime Cancer Risk (ILCR) model suggested moderate to low cancer risks for workers. Strategic interventions recommend mitigating health and environmental risks, prioritizing human health and ecosystem integrity in Pakistan's e-waste management.


Subject(s)
Cities , Electronic Waste , Metals, Heavy , Recycling , Soil Pollutants , Pakistan , Humans , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring , Air Pollutants/analysis , Risk Assessment
9.
Sci Total Environ ; 927: 172254, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583609

ABSTRACT

Socio-economic activities like food trade can increase the uncertainty of human risk of persistent organic pollutants (POPs). We compared the change in model predicted α-hexachlorocyclohexane (α-HCH) cancer risk (CR) with and without grain trade in mainland China. In scenario without grain logistics, α-HCH moved fast away from southern and southeastern China via northward atmospheric transport. However, the grain logistics from northeastern China delivers the α-HCH previously accumulated in northeastern sink back to densely populated areas in recent years, which enhance CR by >50 % in the southern seaboard of China. The northward movement of grain production center and recent grain deficiency in southern provinces induced by dietary pattern changes is identified as the major driving factors of the reversed transport of α-HCH. The finding highlights the potential of socio-economic activities that can otherwise offset the risk reduction effect of the geochemical cycle of POPs.


Subject(s)
Edible Grain , Hexachlorocyclohexane , China , Hexachlorocyclohexane/analysis , Humans , Environmental Exposure/statistics & numerical data , Transportation , Environmental Pollutants/analysis
10.
Sci Total Environ ; 929: 172643, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38649049

ABSTRACT

Particulate inorganic nitrogen aerosols (PIN) significantly influence air pollution and pose health risks worldwide. Despite extensive observations on ammonium (pNH4+) and nitrate (pNO3-) aerosols in various regions, their key sources and mechanisms in the Tibetan Plateau remain poorly understood. To bridge this gap, this study conducted a sampling campaign in Lhasa, the Tibetan Plateau's largest city, with a focus on analyzing the multiple isotopic signatures (δ15N, ∆17O). These isotopes were integrated into a Bayesian mixing model to quantify the source contributions and oxidation pathways for pNH4+ and pNO3-. Our results showed that traffic was the largest contributor to pNH4+ (31.8 %), followed by livestock (25.4 %), waste (21.8 %), and fertilizer (21.0 %), underscoring the impact of vehicular emissions on urban NH3 levels in Lhasa. For pNO3-, coal combustion emerged as the largest contributor (27.3 %), succeeded by biomass burning (26.3 %), traffic emission (25.3 %), and soil emission (21.1 %). In addition, the ∆17O-based model indicated a dominant role of NO2 + OH (52.9 %) in pNO3- production in Lhasa, which was similar to previous observations. However, it should be noted that the NO3 + volatile organic component (VOC) contributed up to 18.5 % to pNO3- production, which was four times higher than the Tibetan Plateau's background regions. Taken together, the multidimensional isotope analysis performed in this study elucidates the pronounced influence of anthropogenic activities on PIN in the atmospheric environment of Lhasa.

11.
Sci Total Environ ; 929: 172762, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670350

ABSTRACT

Organophosphate esters (OPEs) are a class of emerging and ubiquitous contaminants that are attracting increasing attention, and their large-scale use as flame retardants and plasticizers has led to their pervasive presence in the environment, although their broader impacts remain unknown. In this study, 11 OPEs were measured in the atmosphere of Southeast Asia and Southwest China during 2016. The ∑11OPEs were higher in this region (78.0-1670 pg/m3, mean 458 pg/m3) than in many remote areas, lower than in developed regions, and comparable to levels in many developing country cities. Generally, the ∑11OPEs were higher in urban (105-1670 pg/m3, mean 538 pg/m3) than in suburban (78.0-1350 pg/m3, mean 388 pg/m3). Seasonal variations of OPEs in the air were more pronounced in Cambodia and Laos, especially for Triphenyl Phosphate (TPHP). Seasonal variations of ∑11OPEs in most regions correspond to changes in temperature and rainfall. Biomass burning may be also a factor in facilitating OPE emissions from biomass materials or soil into the atmosphere of Southeast Asia. The random forest analysis showed that among these, rainfall had the greatest effect on the seasonal variation of atmospheric OPE concentrations, followed by biomass burning and temperature. The inter-regional variation of ∑11OPEs in Southeast Asia was related to population and economic development in each region. Airflow trajectories indicated that the OPEs in this region were mainly from local sources. The health risk assessment revealed that the inhalation exposure risks of OPEs to the residents in the study areas were very low during the sampling period, but may be increasing.


Subject(s)
Air Pollutants , Environmental Monitoring , Esters , Organophosphates , China , Air Pollutants/analysis , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis , Seasons , India , Atmosphere/chemistry , Air Pollution/statistics & numerical data
12.
Science ; 384(6692): 233-239, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38603490

ABSTRACT

Global estimates of the size, distribution, and vulnerability of soil inorganic carbon (SIC) remain largely unquantified. By compiling 223,593 field-based measurements and developing machine-learning models, we report that global soils store 2305 ± 636 (±1 SD) billion tonnes of carbon as SIC over the top 2-meter depth. Under future scenarios, soil acidification associated with nitrogen additions to terrestrial ecosystems will reduce global SIC (0.3 meters) up to 23 billion tonnes of carbon over the next 30 years, with India and China being the most affected. Our synthesis of present-day land-water carbon inventories and inland-water carbonate chemistry reveals that at least 1.13 ± 0.33 billion tonnes of inorganic carbon is lost to inland-waters through soils annually, resulting in large but overlooked impacts on atmospheric and hydrospheric carbon dynamics.

13.
Food Chem ; 450: 139380, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640535

ABSTRACT

Pyrimethanil (PYR) is a fungicide that is harmful to consumers when present in foods at concentrations greater than maximum permitted residue levels. High-performance immunoprobes and dual-readout strategy may be useful for constructing sensitive lateral flow immunoassay (LFIA). Herein, the prepared litchi-like Au-Ag bimetallic nanospheres (LBNPs) exhibited high mass extinction coefficients and fluorescence quenching constants. Benefiting from LBNPs and dual-readout mode, the limits of detection of LBNPs-CM-LFIA and LBNPs-FQ-LFIA for PYR were 0.957 and 0.713 ng mL-1, which were 2.54- and 3.41-fold lower than that of gold nanoparticles-based LFIA, respectively. The limits of quantitation of LBNPs-CM-LFIA and LBNPs-FQ-LFIA were 3.740 and 1.672 ng mL-1, respectively. LBNPs-LFIA was applied to detect PYR in cucumber and grape samples with satisfactory recovery (90%-111%). LBNPs-LFIA showed good agreement with LC-MS/MS for the detection of PYR in the samples. Accordingly, this sensitive and accurate dual-readout LFIA based on LBNPs can be effectively applied for food safety.


Subject(s)
Food Contamination , Fungicides, Industrial , Gold , Metal Nanoparticles , Nanospheres , Pyrimidines , Silver , Vitis , Silver/chemistry , Gold/chemistry , Nanospheres/chemistry , Pyrimidines/chemistry , Pyrimidines/analysis , Immunoassay/methods , Immunoassay/instrumentation , Food Contamination/analysis , Fungicides, Industrial/analysis , Fungicides, Industrial/chemistry , Vitis/chemistry , Metal Nanoparticles/chemistry , Litchi/chemistry , Cucumis sativus/chemistry , Limit of Detection
14.
Water Res ; 255: 121537, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555784

ABSTRACT

The discharge of industrial wastewater containing high concentrations of N-nitrosamines to the aquatic environment can impair downstream source waters and pose potential risks to human health. However, the transport and fate of N-nitrosamines in typical industrial wastewater treatment plants (IWWTPs) and the influence of these effluents on source water and drinking water are still unclear. This study investigated nine N-nitrosamines in four full-scale electroplating (E-) and printing/dyeing (PD-) IWWTPs, two drinking water treatment plants (DWTPs) in the lower reaches of these IWWTPs, and the corresponding tap water in South China. The total concentrations of N-nitrosamines (∑NAs) were 382-10,600, 480-1920, 494-789, and 27.9-427 ng/L in influents, effluents, source water, and tap water, respectively. The compositions of N-nitrosamine species in different influents varied a lot, while N-nitrosodi-n-butylamine (NDBA) and N-nitrosodimethylamine (NDMA) dominated in most of the effluents, source water, and tap water. More than 70 % N-nitrosamines were removed by wastewater treatment processes used in E-IWWTPs such as ferric-carbon micro-electrolysis (Fe/C-ME), while only about 50 % of N-nitrosamines were removed in PD-IWWTPs due to the use of chlorine reagent or other inefficient conventional processes such as flocculation by cationic amine-based polymers or bio-contact oxidation. Therefore, the mass fluxes of N-nitrosamines discharged from these industrial wastewaters to the environment in the selected two industrial towns were up to 14,700 mg/day. The results based on correlation and principal component analysis significantly demonstrated correlations between E-and PD-effluents and source water and tap water, suggesting that these effluents can serve as sources of N-nitrosamines to local drinking water systems. This study suggests that N-nitrosamines are prevalent in typical IWWTPs, which may infect drinking water systems. The findings of this study provide a basis data for the scientific evaluation of environmental processes of N-nitrosamines.

15.
Environ Sci Technol ; 58(15): 6682-6692, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38547356

ABSTRACT

The atmospheric deposition of anthropogenic active nitrogen significantly influences marine primary productivity and contributes to eutrophication. The form of nitrogen deposition has been evolving annually, alongside changes in human activities. A disparity arises between observation results and simulation conclusions due to the limited field observation and research in the ocean. To address this gap, our study undertook three field cruises in the South China Sea in 2021, the largest marginal sea of China. The objective was to investigate the latest atmospheric particulate inorganic nitrogen deposition pattern and changes in nitrogen sources, employing nitrogen-stable isotopes of nitrate (δ15N-NO3-) and ammonia (δ15N-NH4+) linked to a mixing model. The findings reveal that the N-NH4+ deposition generally surpasses N-NO3- deposition, attributed to a decline in the level of NOx emission from coal combustion and an upswing in the level of NHx emission from agricultural sources. The disparity in deposition between N-NH4+ and N-NO3- intensifies from the coast to the offshore, establishing N-NH4+ as the primary contributor to oceanic nitrogen deposition, particularly in ocean background regions. Fertilizer (33 ± 21%) and livestock (20 ± 6%) emerge as the primary sources of N-NH4+. While coal combustion continues to be a significant contributor to marine atmospheric N-NO3-, its proportion has diminished to 22 (Northern Coast)-35% (background area) due to effective NOx emission controls by the countries surrounding the South China Sea, especially the Chinese Government. As coal combustion's contribution dwindles, the significance of vessel and marine biogenic emissions grows. The daytime higher atmospheric N-NO3- concentration and lower δ15N-NO3- compared with nighttime further underscore the substantial role of marine biogenic emissions.


Subject(s)
Air Pollutants , Coal , Humans , Air Pollutants/analysis , Environmental Monitoring/methods , Nitrogen/analysis , Nitrogen Isotopes/analysis , China , Nitrates/analysis , Dust
16.
J Affect Disord ; 354: 500-508, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38484883

ABSTRACT

BACKGROUND: The dynamic and hierarchical nature of the functional brain network. The neural dynamical systems tend to converge to multiple attractors (stable fixed points or dynamical states) in long run. Little is known about how the changes in this brain dynamic "long-term" behavior of the connectivity flow of brain network in generalized anxiety disorder (GAD). METHODS: This study recruited 92 patients with GAD and 77 healthy controls (HC). We applied a reachable probability approach combining a Non-homogeneous Markov model with transition probability to quantify all possible connectivity flows and the hierarchical structure of brain functional systems at the dynamic level and the stationary probability vector (10-step transition probabilities) to describe the steady state of the system in the long run. A random forest algorithm was conducted to predict the severity of anxiety. RESULTS: The dynamic functional patterns in distributed brain networks had larger possibility to converge in bilateral thalamus, posterior cingulate cortex (PCC), right superior occipital gyrus (SOG) and smaller possibility to converge in bilateral superior temporal gyrus (STG) and right parahippocampal gyrus (PHG) in patients with GAD compared to HC. The abnormal transition probability pattern could predict anxiety severity in patients with GAD. LIMITATIONS: Small samples and subjects taking medications may have influenced our results. Future studies are expected to rule out the potential confounding effects. CONCLUSION: Our results have revealed abnormal dynamic neural communication and integration in emotion regulation in patients with GAD, which give new insights to understand the dynamics of brain function of patients with GAD.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Anxiety Disorders/psychology , Brain Mapping/methods , Temporal Lobe
17.
BMC Complement Med Ther ; 24(1): 125, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500118

ABSTRACT

BACKGROUND: Osimertinib is regarded as a promising third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) for advanced non-squamous non-small cell lung cancer (NSCLC) patients who developed T790M. However the adverse effects, primarily fatigue, remain an overwhelming deficiency of Osimertinib, hindering it from achieving adequate clinical efficacy for such NSCLC. Ganoderma lucidum has been used for thousands of years in China to combat fatigue, while Ganoderma Lucidum spores powder (GLSP) is the main active ingredient. The aim of this study is to investigate whether GLSP is sufficiently effective and safe in improving fatigue and synergizing with Osimertinib in non-squamous NSCLC patients with EGFR mutant. METHOD/DESIGN: A total of 140 participants will be randomly assigned to receive either de-walled GSLP or placebo for a duration of 56 days. The primary outcome measure is the fatigue score associated with EGFR-TKI adverse reactions at week 8, evaluated by the Chinese version of the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire for Cancer Patients (QLQ-C30). Secondary outcomes include evaluation of treatment effectiveness, assessment of quality of life (QoL), and exploration of immune indicators and gut microbiota relationships. Following enrollment, visits are scheduled biweekly until week 12. TRIAL REGISTRATION: China Clinical Trial Registry ChiCTR2300072786. Registrated on June 25, 2023.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Reishi , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Quality of Life , Powders/therapeutic use , ErbB Receptors/genetics , Protein Kinase Inhibitors/adverse effects , Mutation , Spores, Fungal , Randomized Controlled Trials as Topic
18.
Anal Chem ; 96(13): 5205-5214, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38481140

ABSTRACT

Pathogenic diseases that trigger food safety remain a noteworthy concern due to substantial public health, economic, and social burdens worldwide. It is vital for developing an integrated diagnosis and treatment strategy for bacteria, which could achieve quick detection of pathogenic bacteria and the inhibition of multidrug-resistant bacteria. Herein, we reported an organic molecule (M-3) possessed strong light capture capacity, emerging a low energy gap and ΔEST. Subsequently, M-3 was integrated into a nanostructured system (BTBNPs) with excellent ROS generation, light absorption capability, and photothermal performance. Reactive oxygen species (ROS) generated by BTBNPs were mainly free radicals from a type I mechanism, and the high photothermal conversion efficiency of BTBNPs was 41.26%. Benefiting from these advantages of BTBNPs, BTBNPs could achieve a ∼99% antibacterial effect for Escherichia coli O157:H7 with 20 µM dosage and 5 min of irradiation. Furthermore, the limit of detection (LoD) of the proposed BTBNPs-LFIA (colorimetric and photothermal modalities) for detecting E. coli O157:H7 was 4105 and 419 CFU mL-1, respectively. Overall, this work is expected to provide a new and sophisticated perspective for integrated diagnosis and treatment systems regarding pathogenic bacteria.


Subject(s)
Escherichia coli O157 , Multifunctional Nanoparticles , Food Microbiology , Reactive Oxygen Species , Limit of Detection
19.
Environ Int ; 185: 108555, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38458119

ABSTRACT

High-throughput identification and cultivation of functional-yet-uncultivable microorganisms is a fundamental goal in environmental microbiology. It remains as a critical challenge due to the lack of routine and effective approaches. Here, we firstly proposed an approach of stable-isotope-probing and metagenomic-binning directed cultivation (SIP-MDC) to isolate and characterize the active phenanthrene degraders from petroleum-contaminated soils. From SIP and metagenome, we assembled 13 high-quality metagenomic bins from 13C-DNA, and successfully obtained the genome of an active PHE degrader Achromobacter (genome-MB) from 13C-DNA metagenomes, which was confirmed by gyrB gene comparison and average nucleotide/amino identity (ANI/AAI), as well as the quantification of PAH dioxygenase and antibiotic resistance genes. Thereinto, we modified the traditional cultivation medium with antibiotics and specific growth factors (e.g., vitamins and metals), and separated an active phenanthrene degrader Achromobacter sp. LJB-25 via directed isolation. Strain LJB-25 could degrade phenanthrene and its identity was confirmed by ANI/AAI values between its genome and genome-MB (>99 %). Our results hinted at the feasibility of SIP-MDC to identify, isolate and cultivate functional-yet-uncultivable microorganisms (active phenanthrene degraders) from their natural habitats. Our findings developed a state-of-the-art SIP-MDC approach, expanded our knowledge on phenanthrene biodegradation mechanisms, and proposed a strategy to mine functional-yet-uncultivable microorganisms.


Subject(s)
Phenanthrenes , Soil Pollutants , Metagenome , Phenanthrenes/metabolism , Isotopes , DNA , Biodegradation, Environmental , Soil Microbiology , Soil Pollutants/metabolism
20.
Lancet Reg Health West Pac ; 45: 101031, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361774

ABSTRACT

Background: Recurrence following radical resection in patients with stage IB gastric cancer (GC) is not uncommon. However, whether postoperative adjuvant chemotherapy could reduce the risk of recurrence in stage IB GC remains contentious. Methods: We collected data on 2110 consecutive patients with pathologic stage IB (T1N1M0 or T2N0M0) GC who were admitted to 8 hospitals in China from 2009 to 2018. The survival of patients who received adjuvant chemotherapy was compared with that of postoperative observation patients using propensity score matching (PSM). Two survival prediction models were constructed to estimate the predicted net survival gain attributable to adjuvant chemotherapy. Findings: Of the 2110 patients, 1344 received adjuvant chemotherapy and 766 received postoperative observation. Following the 1-to-1 matching, PSM yielded 637 matched pairs. Among matched pairs, adjuvant chemotherapy was not associated with improved survival compared with postoperative observation (OS: hazard ratio [HR], 0.72; 95% CI, 0.52-1.00; DFS: HR, 0.91; 95% CI, 0.64-1.29). Interestingly, in the subgroup analysis, reduced mortality after adjuvant chemotherapy was observed in the subgroups with elevated serum CA19-9 (HR, 0.22; 95% CI, 0.08-0.57; P = 0.001 for multiplicative interaction), positive lymphovascular invasion (HR, 0.32; 95% CI, 0.17-0.62; P < 0.001 for multiplicative interaction), or positive lymph nodes (HR, 0.17; 95% CI, 0.07-0.38; P < 0.001 for multiplicative interaction). The survival prediction models mainly based on variables associated with chemotherapy benefits in the subgroup analysis demonstrated good calibration and discrimination, with relatively high C-indexes. The C-indexes for OS were 0.74 for patients treated with adjuvant chemotherapy and 0.70 for patients treated with postoperative observation. Two nomograms were built from the models that can calculate individualized estimates of expected net survival gain attributable to adjuvant chemotherapy. Interpretation: In this cohort study, pathologic stage IB alone was not associated with survival benefits from adjuvant chemotherapy compared with postoperative observation in patients with early-stage GC. High-risk clinicopathologic features should be considered simultaneously when evaluating patients with stage IB GC for adjuvant chemotherapy. Funding: National Natural Science Foundation of China; the National Key R&D Program of China.

SELECTION OF CITATIONS
SEARCH DETAIL
...