Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(14): 18372-18378, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36987738

ABSTRACT

High-performance phototransistor-based solar-blind (200-280 nm) ultraviolet (UV) photodetectors (PDs) are constructed with a low-cost thin-film ZnO/Ga2O3 heterojunction. The optimized PD shows high spectral selectivity (R254/R365 > 1 × 103) with a photo-to-dark current ratio of ∼104, a responsivity of 113 mA/W, a detectivity of 1.25 × 1012 Jones, and a response speed of 41 ms under 254 nm UV light irradiation. It is found that the gate electrode of a three-terminal phototransistor can amplify the responsivity and increase the photo-to-dark current ratio because of the different densities of field-induced electrons at different gate biases. In addition, the built-in electric field at the ZnO/Ga2O3 heterojunction interface can control the distribution of the photoinduced electrons and the total conductivity of the heterojunction, which can further enhance device performance. Together with the simple fabrication process, the achieved results suggest that the three-terminal ZnO/Ga2O3 heterojunction phototransistor is a promising candidate for highly sensitive solar-blind PDs.

2.
Peptides ; 30(4): 647-53, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19111845

ABSTRACT

A 9-residue peptide, CP-1 (GLRILLLKV-NH(2)), is synthesized by solid-phase synthesis method. CP-1 is a C-terminal amidated derivative of a hydrophobic transmembrane segment (CP) of the T-cell antigen receptor (TCR) alpha-chain. CP-1 shows broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria with the minimal inhibitory concentration (MIC) values between 3 and 77microM. Circular dichroism (CD) spectral data shows that CP-1 adopts a well-defined beta-sheet structure in membrane-mimicking environments. CP-1 kills E. coli without lysing the cell membrane or forming transmembrane pores. However, CP-1 can penetrate the bacterial cell membranes and accumulate in the cytoplasm in both Gram-positive S. aureus and Gram-negative E. coli. Moreover CP-1 shows binding affinity for plasmid DNA. These results indicate that the killing mechanism of CP-1 likely involves the penetration into the cytoplasm and binding to intracellular components such as DNA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Circular Dichroism , DNA/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Microscopy, Confocal , Microscopy, Electron, Scanning , Peptide Fragments/metabolism , Protein Structure, Secondary
3.
J Biochem ; 144(6): 781-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18845567

ABSTRACT

PEGylation of peptide drugs prolongs their circulating lifetimes in plasma. However, PEGylation can produce a decrease in the in vitro bioactivity. Longer poly(ethylene glycol) (PEG) chains are favourable for circulating lifetimes but unfavourable for in vitro bioactivities. In order to circumvent the conflicting effects of PEG length, a hydrophobic peptide, using an antimicrobial peptide as a model, was PEGylated with short PEG chains. The PEGylated peptides self-assembled in aqueous solution into micelles with PEG shell and peptide core. In these micelles, the core peptides were protected by the shell, thus reducing proteolytic degradation. Meanwhile, most of the in vitro antimicrobial activities still remained due to the short PEG chain attached. The stabilities of the PEGylated peptides were much higher than that of the unPEGylated peptides in the presence of chymotrypsin and serum. The antimicrobial activities of the PEGylated peptides in the presence of serum, an ex vivo assay, were much higher than that of the unPEGylated peptide.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Polyethylene Glycols/chemistry , Circular Dichroism , Drug Carriers/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...