Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(22): 22334-22354, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37782570

ABSTRACT

As a major late complication of diabetes, diabetic peripheral neuropathy (DPN) is the primary reason for amputation. Nevertheless, there are no wonder drugs available. Regulating dysfunctional mitochondria is a key therapeutic target for DPN. Resveratrol (RSV) is widely proven to guard mitochondria, yet the unsatisfactory bioavailability restricts its clinical application. Tetrahedral framework nucleic acids (tFNAs) are promising carriers due to their excellent cell entrance efficiency, biological safety, and structure editability. Here, RSV was intercalated into tFNAs to form the tFNAs-RSV complexes. tFNAs-RSV achieved enhanced stability, bioavailability, and biocompatibility compared with tFNAs and RSV alone. With its treatment, reactive oxygen species (ROS) production was minimized and reductases were activated in an in vitro model of DPN. Besides, respiratory function and adenosine triphosphate (ATP) production were enhanced. tFNAs-RSV also exhibited favorable therapeutic effects on sensory dysfunction, neurovascular deterioration, demyelination, and neuroapoptosis in DPN mice. Metabolomics analysis revealed that redox regulation and energy metabolism were two principal mechanisms that were impacted during the process. Comprehensive inspections indicated that tFNAs-RSV inhibited nitrosation and oxidation and activated reductase and respiratory chain. In sum, tFNAs-RSV served as a mitochondrial nanoguard (mito-guard), representing a viable drilling target for clinical drug development of DPN.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Nucleic Acids , Mice , Animals , Diabetic Neuropathies/drug therapy , Oxidation-Reduction , Mitochondria , Antioxidants/chemistry , Resveratrol/metabolism , Resveratrol/pharmacology , Nucleic Acids/metabolism , Homeostasis , Diabetes Mellitus/metabolism
2.
Nanoscale ; 15(17): 7877-7893, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37060124

ABSTRACT

Radiation-induced oral mucositis (RIOM) is considered to be one of the most important public health problems today, affecting the overall well-being of millions of patients who have received radiotherapy. Nevertheless, the field of preventing and treating RIOM is still widely unexplored. Curcumin (Cur) with its promising anti-inflammatory and antioxidant properties is accompanied with obstacles in application, including poor dissolubility, instability and low bioavailability. In this study, a tetrahedral framework nucleic acid drug delivery system (TFNAS) was synthesized and established using a novel method to carry Cur (Cur-TFNAS) for efficient drug delivery. The results showed that Cur-TFNAS enhanced the antioxidant capacity of human oral mucosal keratin-forming cells (HOKs) compared to free Cur and TFNAS. Meanwhile, Cur-TFNAS reduced DNA damage and shielded the cells from inflammatory factors. A similar result was also well documented in vivo. Herein, we consider that Cur-TFNAS acts as a nano-shield for preventing radiation oral mucositis and shows important clinical value in the future.


Subject(s)
Curcumin , Mucositis , Nucleic Acids , Stomatitis , Humans , Antioxidants/pharmacology , Drug Delivery Systems , Curcumin/pharmacology , Stomatitis/drug therapy , Stomatitis/etiology
3.
J Histotechnol ; 44(2): 99-110, 2021 06.
Article in English | MEDLINE | ID: mdl-33480322

ABSTRACT

The A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family is gradually being recognized as an important family of mediators that, along with the matrix metalloproteinases (MMPs), control the degradation process in osteoarthritis (OA). The objective of this study was to uncover the detailed alterations of ADAMTS1, ADAMTS2, and ADAMTS5 in the knee joint of OA mice. The OA model was established by anterior cruciate ligament transection (ACLT) on the knee joints of C57BL/6 J mice. The mice showed representative phenotypes of ACLT-induced OA, including obvious deterioration of the cartilage, reductions in the collagen and proteoglycan components in the cartilage matrix of OA mice, and increased inflammation and osteoclast activity. By qPCR, the gene expression levels of Adamts1, -2, and -5 were the top-ranked among Adamts1-5 in cartilage/chondrocytes, osteogenic tissue/osteoblasts, and cortical bone/osteocytes. Moreover, the protein expression levels of ADAMTS1, -2, and -5 were all increased in articular cartilage, the growth plate, and subchondral bone of the knee joint. The results suggest the important roles of ADAMTS1, -2, and -5 in OA disease, which will be helpful in further research on degenerative changes in OA.


Subject(s)
Disintegrins , Matrix Metalloproteinases , Osteoarthritis , Animals , Knee Joint , Mice , Mice, Inbred C57BL , Osteoarthritis/genetics , Thrombospondins
4.
PeerJ ; 8: e10062, 2020.
Article in English | MEDLINE | ID: mdl-33194377

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in head and neck cancer, with high recurrence and mortality. Early diagnosis and efficient therapeutic strategies are vital for the treatment of OSCC patients. Exosomes can be isolated from a broad range of different cell types, implicating them as important factors in the regulation of human physiological and pathological processes. Due to their abundant cargo including proteins, lipids, and nucleic acids, exosomes have played a valuable diagnostic and therapeutic role across multiple diseases, including cancer. In this review, we summarize recent findings concerning the content within and participation of exosomes relating to OSCC and their roles in tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. We conclude this review by looking ahead to their potential utility in providing new methods for treating OSCC to inspire further research in this field.

5.
Front Cell Dev Biol ; 8: 846, 2020.
Article in English | MEDLINE | ID: mdl-33117793

ABSTRACT

As the first compartment of the protein secretory pathway, the endoplasmic reticulum (ER) acts as a protein synthesis factory, maintaining proteostasis and ER homeostasis. However, a variety of intrinsic and extrinsic perturbations, such as cancer, can disrupt the homeostasis and result in a large accumulation of misfolded/unfolded proteins in the ER lumen, thereby provoking a specific cellular state addressed as "ER stress". Then the unfolded protein response (UPR), an adaptive signaling pathway, is triggered to address the stress and restore the homeostasis. A novel aspect of ER stress is that it can be transmitted from cancer cells to tumor-infiltrating myeloid cells through certain cancer cell-released soluble factors, which is termed as transmissible ER stress (TERS) or ER stress resonance (ERSR). In this review, we provide a comprehensive overview of the link between cancer and ER stress as well as the possible soluble factors mediating TERS. We further elaborate the cell-extrinsic effects of TERS on tumor immunity, and how it indirectly modulates cancer development and progression, which is expected to add a new dimension to anticancer therapy.

6.
Stem Cells Int ; 2020: 8868593, 2020.
Article in English | MEDLINE | ID: mdl-32908545

ABSTRACT

Stem cells play an irreplaceable role in the development, homeostasis, and regeneration of the craniofacial bone. Multiple populations of tissue-resident craniofacial skeletal stem cells have been identified in different stem cell niches, including the cranial periosteum, jawbone marrow, temporomandibular joint, cranial sutures, and periodontium. These cells exhibit self-renewal and multidirectional differentiation abilities. Here, we summarized the properties of craniofacial skeletal stem cells, based on their spatial distribution. Specifically, we focused on the in vivo genetic fate mapping of stem cells, by exploring specific stem cell markers and observing their lineage commitment in both the homeostatic and regenerative states. Finally, we discussed their application in regenerative medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...