Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Int J Biol Sci ; 20(7): 2763-2778, 2024.
Article in English | MEDLINE | ID: mdl-38725845

ABSTRACT

Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting ß-catenin/TGF-ß1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Humans , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Male , Mice , Multiomics
2.
Hepatol Int ; 18(2): 636-650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37982952

ABSTRACT

BACKGROUND: Aberrant iron metabolism is commonly observed in multiple tumor types, including hepatocellular carcinoma (HCC). However, as the key regulator of iron metabolism involved in iron absorption, the role of transferrin receptor (TFRC) in HCC remains elusive. METHODS: The mRNA and protein expression of TFRC were evaluated in paired HCC and adjacent non-tumor specimens. The correlation between TFRC level and clinicopathological features or prognostic significance was also analyzed. The role of TFRC on biological functions was finally studied in vitro and in vivo. RESULTS: The TFRC level was remarkably upregulated in HCC tissues compared to paired peritumor tissues. Overexpressed TFRC positively correlated with serum alpha-fetoprotein, carcinoembryonic antigen, and poor tumor differentiation. Multivariate analysis demonstrated that upregulated TFRC was an independent predictive marker for poorer overall survival and disease-free survival in HCC patients. Loss of TFRC markedly impaired cell proliferation and migration in vitro and notably suppressed HCC growth and metastasis in vivo, while overexpression of TFRC performed an opposite effect. Mechanistically, the mTOR signaling pathway was downregulated with TFRC knockdown, and the mTOR agonist MHY1485 completely reversed the biological inhibition in HCC cells caused by TFRC knockdown. Furthermore, exogenous ferric citrate (FAC) or iron chelator reversed the changed biological functions and signaling pathway expression of HCC cells caused by TFRC knockdown or overexpression, respectively. CONCLUSIONS: Our study indicates that TFRC exerts an oncogenic role in HCC and may become a promising therapeutic target to restrain HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Iron/metabolism , Liver Neoplasms/pathology , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
3.
J Dig Dis ; 24(6-7): 399-407, 2023.
Article in English | MEDLINE | ID: mdl-37596850

ABSTRACT

OBJECTIVES: As a critical component of the autophagic machinery, autophagy-related gene 5 (ATG5) is essential for autophagosome formation. Autophagy participates in the transformation and progression of various malignant tumors, but the role of ATG5 in hepatocellular carcinoma (HCC) remains to be illustrated. In this study we aimed to investigate the prognostic significance of ATG5 in HCC. METHODS: ATG5 expression was evaluated in 89 pairs of HCC tissues and adjacent non-tumor tissues. The relationship between ATG5 expression and patients' clinicopathological characteristics and prognosis were evaluated. Moreover, subgroup analyses were performed regarding patients' age and number of tumors. Nomograms estimating overall survival (OS) and disease-free survival (DFS) were conducted. RESULTS: ATG5 expression was increased in HCC specimens rather than adjacent non-tumor tissues. The upregulated ATG5 expression was positively associated with serum α-fetoprotein (AFP) level. Moreover, cases with a strong ATG5 expression had a poorer disease-free survival (DFS) and overall survival (OS) than those with a weak ATG5 expression. Multivariate analysis showed that a strong expression of ATG5 was related to a poor OS and DFS in patients with HCC. Further analysis indicated that cases with a higher ATG5 expression had a poorer OS and DFS in the young patients (≤55 years) and those with solitary tumor. The nomogram suggested that there was a coherence between nomogram prediction and the actual situation of patient survival related to ATG5. CONCLUSION: ATG5 promotes tumor progression in HCC, making it a potential biomarker in the diagnosis and a therapeutic target of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Autophagy/genetics , Biomarkers, Tumor , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Nomograms , Prognosis
4.
Adv Healthc Mater ; 12(27): e2301133, 2023 10.
Article in English | MEDLINE | ID: mdl-37311013

ABSTRACT

Ferroptosis is identified as a novel type of cell death with distinct properties involved in physical conditions and various diseases, including cancers. It is considered that ferroptosis provides a promising therapeutic strategy for optimizing oncotherapy. Although erastin is an effective ferroptosis trigger, the potential of its clinical application is largely restricted by its poor water solubility and concomitant limitations. To address this issue, an innovative nanoplatform (PE@PTGA) that integrated protoporphyrin IX (PpIX) and erastin coated with amphiphilic polymers (PTGA) to evoke ferroptosis and apoptosis is constructed and exemplified using an orthotopic hepatocellular carcinoma (HCC) xenograft mouse model as a paradigm. The self-assembled nanoparticles can enter HCC cells and release PpIX and erastin. With light stimulation, PpIX exerts hyperthermia and reactive oxygen species to inhibit the proliferation of HCC cells. Besides, the accumulated reactive oxygen species (ROS) can further promote erastin-induced ferroptosis in HCC cells. In vitro and in vivo studies reveal that PE@PTGA synergistically inhibits tumor development by stimulating both ferroptosis- and apoptosis-related pathways. Moreover, PE@PTGA has low toxicity and satisfactory biocompatibility, suggesting its promising clinical benefit in cancer treatments.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Prodrugs , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Prodrugs/pharmacology , Prodrugs/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor
5.
Cancer Res ; 83(4): 521-537, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36723974

ABSTRACT

Lipid metabolism reprogramming is a recognized hallmark of cancer cells. Identification of the underlying regulators of metabolic reprogramming in esophageal squamous cell carcinoma (ESCC) could uncover potential therapeutic targets to improve treatment. Here, we demonstrated that pre-mRNA processing factor 19 (PRP19) mediates reprogramming of lipid metabolism in ESCC. Expression of PRP19 was significantly upregulated in multiple ESCC cohorts and was correlated with poor clinical prognosis. PRP19 promoted ESCC proliferation in vitro and in vivo. Upregulation of PRP19 enhanced fatty acid synthesis through sterol regulatory element-binding protein 1 (SREBF1), a major transcription factor of lipid synthase. Moreover, PRP19 enhanced the stability of SREBF1 mRNA in an N6-methyladenosine-dependent manner. Overall, this study shows that PRP19-mediated fatty acid metabolism is crucial for ESCC progression. Targeting PRP19 is a potential therapeutic approach to reverse metabolic reprogramming in patients with ESCC. SIGNIFICANCE: Upregulation of pre-mRNA processing factor 19 (PRP19) contributes to esophageal squamous cell carcinoma progression by reprogramming SREBF1-dependent fatty acid metabolism, identifying PRP19 as a potential prognostic biomarker and therapeutic target.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Fatty Acids , Gene Expression Regulation, Neoplastic , Lipid Metabolism/genetics , Prognosis , RNA Precursors/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
6.
J Transl Med ; 20(1): 579, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494846

ABSTRACT

Primary liver cancer (PLC) is a common gastrointestinal malignancy worldwide. While hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two major pathologic types of PLC, combined HCC and ICC (cHCC-ICC) is a relatively rare subtype that shares both hepatocyte and cholangiocyte differentiation. However, the molecular feature of this unique tumor remains elusive because of its low incidence and lack of a suitable animal model. Herein, we generated a novel spontaneous cHCC-ICC model using a Sleeping Beauty-dependent transposon plasmid co-expressing oncogenic Myc and AKT1 and a CRISPR-Cas9 plasmid expressing single-guide RNA targeting p53 into mouse hepatocytes via in situ electroporation. The histological and transcriptional analysis confirmed that this model exhibits cHCC-ICC features and activates pathways committing cHCC-ICC formation, such as TGF-ß, WNT, and NF-κB. Using this model, we further screened and identified LAMB1, a protein involved in cell adhesion and migration, as a potential therapeutic target for cHCC-ICC. In conclusion, our work presents a novel genetic cHCC-ICC model and provides new insights into cHCC-ICC.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Disease Models, Animal , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Retrospective Studies
7.
J Clin Transl Hepatol ; 10(4): 680-691, 2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36062271

ABSTRACT

Background and Aims: Radiation-induced liver fibrosis (RILF), delayed damage to the liver (post-irradiation) remains a major challenge for the radiotherapy of liver malignancies. This study investigated the potential function and mechanism of circTUBD1 in the development of RILF. Methods: By using a dual luciferase assay, RNA pull-down assays, RNA sequencing, chromatin immunoprecipitation (known as ChIP) assays, and a series of gain- or loss-of-function experiments, it was found that circTUBD1 regulated the activation and fibrosis response of LX-2 cells induced by irradiation via a circTUBD1/micro-203a-3p/Smad3 positive feedback loop in a 3D system. Results: Knockdown of circTUBD1 not only reduced the expression of α-SMA, as a marker of LX-2 cell activation, but also significantly decreased the levels of hepatic fibrosis molecules, collagen type I alpha 1 (COL1A1), collagen type III alpha 1 (COL3A1), and connective tissue growth factor (CTGF) in a three-dimensional (3D) culture system and RILF model in vivo. Notably, knockdown of circTUBD1 alleviated early liver fibrosis induced by irradiation in mice models. Conclusions: This study is the first to reveal the mechanism and role of circTUBD1 in RILF via a circTUBD1/micro-203a-3p/Smad3 feedback loop, which provides a novel therapeutic strategy for relieving the progression of RILF.

8.
Front Pharmacol ; 13: 952482, 2022.
Article in English | MEDLINE | ID: mdl-36071851

ABSTRACT

Sorafenib resistance is often developed and impedes the benefits of clinical therapy in hepatocellular carcinoma (HCC) patients. However, the relationship between sorafenib resistance and tumor immune environment and adjuvant drugs for sorafenib-resistant HCC are not systemically identified. This study first analyzed the expression profiles of sorafenib-resistant HCC cells to explore immune cell infiltration levels and differentially expressed immune-related genes (DEIRGs). The prognostic value of DEIRGs was analyzed using Cox regression and Kaplan-Meier analysis based on The Cancer Genome Atlas. The primary immune cells infiltrated in sorafenib-resistant HCC mice were explored using flow cytometry (FCM). Finally, small-molecule drugs for sorafenib-resistant HCC treatment were screened and validated by experiments. The CIBERSORT algorithm and mice model showed that macrophages and neutrophils are highly infiltrated, while CD8+ T cells are downregulated in sorafenib-resistant HCC. Totally, 34 DEIRGs were obtained from sorafenib-resistant and control groups, which were highly enriched in immune-associated biological processes and pathways. NR6A1, CXCL5, C3, and TGFB1 were further identified as prognostic markers for HCC patients. Finally, nalidixic acid was identified as a promising antagonist for sorafenib-resistant HCC treatment. Collectively, our study reveals the tumor immune microenvironment changes and explores a promising adjuvant drug to overcome sorafenib resistance in HCC.

9.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144982

ABSTRACT

Hepatocellular carcinoma (HCC) accounts for the predominant form of liver malignancy and presents a leading cause of cancer-related death globally. Sorafenib (SOR), a first-line targeted drug for advanced HCC treatment, has a battery of untoward side effects. Photothermal therapy (PTT) has been utilized as an effective adjuvant in synergy with other approaches. However, little is known about the tumoricidal efficacy of combining SOR with PTT for HCC. Herein, a novel versatile nanoparticle, Cu2-xSe@SOR@PEG (CSP), that is based on a photothermal Cu2-xSe core and SOR for simultaneously reinforcing PTT and reducing the adverse effects of SOR was constructed. The synthesized CSP exhibited a remarkably enhanced therapeutic effect upon 808 nm laser irradiation via dampening HCC cell propagation and metastasis and propelling cell apoptosis. The intravenous administration of CSP substantially suppressed tumor growth in a xenograft tumor mouse model. It was noted that the CSP manifested low toxicity and excellent biocompatibility. Together, this work indicates a promising and versatile tool that is based on synergistic PTT and molecular-targeted therapy for HCC management.

10.
ACS Appl Mater Interfaces ; 14(33): 37356-37368, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35951459

ABSTRACT

Although sorafenib, a multi-kinase inhibitor, has provided noteworthy benefits in patients with hepatocellular carcinoma (HCC), the inevitable side effects, narrow therapeutic window, and low bioavailability seriously affect its clinical application. To be clinically distinctive, innovative drugs must meet the needs of reaching tumor tissues and cause limited side effects to normal organs and tissues. Recently, photodynamic therapy, utilizing a combination of a photosensitizer and light irradiation, was selectively accumulated at the tumor site and taken up effectively via inducing apoptosis or necrosis of cancer cells. In this study, a nano-chemo-phototherapy drug was fabricated to compose an iridium-based photosensitizer combined with sorafenib (IPS) via a self-assembly process. Compared to the free iridium photosensitizer or sorafenib, the IPS exhibited significantly improved therapeutic efficacy against tumor cells because of the increased cellular uptake and the subsequent simultaneous release of sorafenib and generation of reactive oxygen species production upon 532 nm laser irradiation. To evaluate the effect of synergistic treatment, cytotoxicity detection, live/dead staining, cell proliferative and apoptotic assay, and Western blot were performed. The IPS exhibited sufficient biocompatibility by hemolysis and serum biochemical tests. Also, the results suggested that IPS significantly inhibited HCC cell proliferation and promoted cell apoptosis. More importantly, marked anti-tumor growth effects via inhibiting cell proliferation and promoting tumor cell death were observed in an orthotopic xenograft HCC model. Therefore, our newly proposed nanotheranostic agent for combined chemotherapeutic and photodynamic therapy notably improves the therapeutic effect of sorafenib and has the potential to be a new alternative option for HCC treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Nanocomposites , Photochemotherapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Humans , Iridium/pharmacology , Liver Neoplasms/pathology , Nanocomposites/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Sorafenib/therapeutic use
11.
J Oncol ; 2022: 1971559, 2022.
Article in English | MEDLINE | ID: mdl-35342408

ABSTRACT

microRNAs (miRNAs) and miRNA-mediated regulatory networks are promising candidates in the prevention and treatment of cancer, but the role of specific miRNAs involved in hepatocellular carcinoma (HCC) remains to be elusive. Herein, we found that miR-106b-5p is upregulated in both HCC patients' tumor tissues and HCC cell lines. The miR-106b-5p expression level was positively correlated with α-fetoprotein (AFP), hepatitis B surface antigen (HBsAg), and tumor size. Overexpression of miR-106b-5p promoted cell proliferation, migration, cell cycle G1/S transition, and tumor growth, while decreased miR-106b-5p expression had opposite effects. Mechanistic studies showed that B-cell translocation gene 3 (BTG3), a known antiproliferative protein, was a direct target of miR-106b-5p, whose expression level is inversely correlated with miR-106b-5p expression. Moreover, miR-106b-5p positively regulates cell proliferation in a BTG3-dependent manner, resulting in upregulation of Bcl-xL, cyclin E1, and CDK2, as well as downregulation of p27. More importantly, we also demonstrated that miR-106b-5p enhances the resistance to sorafenib treatment in a BTG3-dependent manner. The in vivo findings showed that mice treated with a miR-106b-5p sponge presented a smaller tumor burden than controls, while the mice injected cells treated with miR-106b-5p had more considerable tumor burden than controls. Altogether, these data suggest that miR-106b-5p promotes cell proliferation and cell cycle and increases HCC cells' resistance to sorafenib through the BTG3/Bcl-xL/p27 signaling pathway.

12.
J Oncol ; 2022: 5705896, 2022.
Article in English | MEDLINE | ID: mdl-35356253

ABSTRACT

Introduction: Evidence suggests that the role of senescence in the development of cancer is context-dependent. An orthologue of human pre-mRNA processing factor 19 (Prp19) attenuates the senescence of human endothelial cells. Prp19 has been reported to be involved in the progression of hepatocellular carcinoma (HCC). This work aims to investigate the effect of Prp19 on the senescence of HCC. Materials and Methods: Senescence of L02 cells and HCC cells under different stimuli was detected through cell cycle analysis, SA-ß-gal staining, and senescence associated secretory phenotype analysis. The relationship between Prp19 and senescence-related proteins was evaluated using real-time RT-PCR, western blot assay, and immunohistochemistry. Subcutaneous xenograft tumors in nude mice were used to evaluate the role of Prp19 on senescence in vivo. Data analysis was carried out using GraphPad Prism 6. Results: Prp19 facilitated the senescence of L02 cells and HCC cells under different stresses. Prp19 positively modulated p21 expression in the mRNA level. Downregulation of Prp19 promoted the growth of subcutaneous xenograft tumors generated by HCC cell lines. Conclusions: Prp19 may promote senescence of HCC cells via regulating p21 expression.

13.
ACS Appl Mater Interfaces ; 14(2): 2674-2682, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35001612

ABSTRACT

Hybrid supercapacitors are considered the next-generation energy storage equipment due to their superior performance. In hybrid supercapacitors, battery electrodes need to have large absolute capacities while displaying high cycling stability. However, enhancing areal capacity via decreasing the size of electrode materials results in reductions in cycling stability. To balance the capacity-stability trade-off, rationally designed proper electrode structures are in urgent need and still of great challenge. Here we report a high-capacity and high cycling stability electrode material by developing a nickel phosphate lamination structure with ultrathin nanosheets as building blocks. The nickel phosphate lamination electrode material exhibits a large specific capacity of 473.9 C g-1 (131.6 mAh g-1, 1053 F g-1) at 2.0 A g-1 and only about 21% capacity loss at 15 A g-1 (375 C g-1, 104.2 mAh g-1, 833.3 F g-1) in 6.0 M KOH. Furthermore, hybrid supercapacitors are constructed with nickel phosphate lamination and activated carbon (AC), possessing high energy density (42.1 Wh kg-1 at 160 W kg-1) as well as long cycle life (almost 100% capacity retention after 1000 cycles and 94% retention after 8000 cycles). The electrochemical performance of the nickel phosphate lamination structure not only is commensurate with the nanostructure or ultrathin materials carefully designed in supercapacitors but also has a longer cycling lifespan than them. The encouraging results show the great potential of this material for energy storage device applications.

14.
Mol Ther Nucleic Acids ; 27: 390-403, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35036052

ABSTRACT

Pre-mRNA processing factor 19 (PRP19) is elevated in hepatocellular carcinoma (HCC); however, little is known about its function in DNA damage repair in HCC. In this study, analysis of The Cancer Genome Atlas data and our tumor models after ionizing radiation (IR) treatment indicated that increased expression of PRP19 was positively correlated with DNA damage repair. Gain of PRP19 expression induced by plasmids resulted in decreases in apoptosis and double-strand breaks (DSBs), and an increase in cell survival after IR. Loss of PRP19 expression induced by small interfering RNAs resulted in the accumulation of apoptosis and DSBs, and a decrease in cell survival. Mechanistically, the effect of PRP19 on DNA damage repair was mediated by the modulation of cyclin D1 expression in HCC. PRP19 controlled the translation of cyclin D1 by modulating eukaryotic initiation factor 4E. PRP19 affected the DNA damage repair ability of cyclin D1 by interacting with the WD40 domain. The combination of PRP19 and cyclin D1 was more valuable than each single marker for predicting the prognosis of patients. Taken together, the present results demonstrate that PRP19 promotes DNA damage repair by modulating cyclin D1 expression and function, thereby contributing to the radioresistance in HCC.

15.
J Transl Med ; 19(1): 347, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389031

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAM) are immunosuppressive cells that contribute to impaired anti-cancer immunity. Iron plays a critical role in regulating macrophage function. However, it is still elusive whether it can drive the functional polarization of macrophages in the context of cancer and how tumor cells affect the iron-handing properties of TAM. In this study, using hepatocellular carcinoma (HCC) as a study model, we aimed to explore the effect and mechanism of reduced ferrous iron in TAM. METHODS: TAM from HCC patients and mouse HCC tissues were collected to analyze the level of ferrous iron. Quantitative real-time PCR was used to assess M1 or M2 signature genes of macrophages treated with iron chelators. A co-culture system was established to explore the iron competition between macrophages and HCC cells. Flow cytometry analysis was performed to determine the holo-transferrin uptake of macrophages. HCC samples from The Cancer Genome Atlas (TCGA) were enrolled to evaluate the prognostic value of transferrin receptor (TFRC) and its relevance to tumor-infiltrating M2 macrophages. RESULTS: We revealed that ferrous iron in M2-like TAM is lower than that in M1-like TAM. In vitro analysis showed that loss of iron-induced immunosuppressive M2 polarization of mouse macrophages. Further experiments showed that TFRC, the primary receptor for transferrin-mediated iron uptake, was overexpressed on HCC cells but not TAM. Mechanistically, HCC cells competed with macrophages for iron to upregulate the expression of M2-related genes via induction of HIF-1α, thus contributing to M2-like TAM polarization. We further clarified the oncogenic role of TFRC in HCC patients by TCGA. TFRC is significantly increased in varieties of malignancies, including HCC, and HCC patients with high TFRC levels have considerably shortened overall survival. Also, TFRC is shown to be positively related to tumor-infiltrating M2 macrophages. CONCLUSIONS: Collectively, we identified iron starvation through TFRC-mediated iron competition drives functional immunosuppressive polarization of TAM, providing new insight into the interconnection between iron metabolism and tumor immunity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Cell Line, Tumor , Humans , Iron , Mice , Tumor-Associated Macrophages
16.
Adv Healthc Mater ; 9(21): e2000650, 2020 11.
Article in English | MEDLINE | ID: mdl-33000919

ABSTRACT

Sorafenib (SOR), a multi-kinase inhibitor for advanced hepatocellular carcinoma (HCC), reveals a limited therapeutic effect due to a lack of selectivity and evident drug resistance. In the present study, bismuth-based mesoporous nanomaterial (NBOF) is loaded with SOR and then coated with polyethylene glycol and folic acid conjugates (P-FA) to form an NBOF@SOR-P-FA nanocarrier system. The system achieves significantly enhanced anti-cancer efficacy by combining chemotherapy with radiotherapy. To evaluate the effect of synergistic treatment, cytotoxicity detection, Live/Dead staining, apoptotic assay, and Western blot analysis are performed. The results suggest that NBOF@SOR-P-FA significantly inhibits HCC cell proliferation and promotes cell apoptosis. Also, the NBOF@SOR-P-FA exhibits excellent biocompatibility by hemolysis and serum biochemical tests and produces a substantially enhanced contrast efficiency as compared to iohexol by computed tomography imaging. More importantly, the profound suppression of tumor growth and potentiation of apoptosis are observed in a mouse subcutaneous tumor model. Collectively, these results indicate that the bismuth-based nanotheranostic platform could enhance the therapeutic effect of sorafenib and serve as an innovative method for HCC treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Bismuth/pharmacology , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Chemoradiotherapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Mice , Niacinamide , Sorafenib/pharmacology , Sorafenib/therapeutic use
17.
Oncogene ; 39(35): 5768-5781, 2020 08.
Article in English | MEDLINE | ID: mdl-32719439

ABSTRACT

Cumulative evidence suggests that microRNAs (miRNAs) promote gene expression in cancers. However, the pathophysiologic relevance of miRNA-mediated RNA activation in hepatocellular carcinoma (HCC) remains to be established. Our previous miRNA expression profiling in seven-paired HCC specimens revealed miR-93-5p as an HCC-related miRNA. In this study, miR-93-5p expression was assessed in HCC tissues and cell lines by quantitative real-time PCR and fluorescence in situ hybridization. The correlation of miR-93-5p expression with survival and clinicopathological features of HCC was determined by statistical analysis. The function and potential mechanism of miR-93-5p in HCC were further investigated by a series of gain- or loss-of-function experiments in vitro and in vivo. We identified that miR-93-5p, overexpressed in HCC specimens and cell lines, leads to poor outcomes in HCC cases and promotes proliferation, migration, and invasion in HCC cell lines. Mechanistically, rather than decreasing target mRNA levels as expected, miR-93-5p binds to the 3'-untranslated region (UTR) of mitogen-activated protein kinase kinase kinase 2 (MAP3K2) to directly upregulate its expression and downstream p38 and c-Jun N-terminal kinase (JNK) pathway, thereby leading to cell cycle progression in HCC. Notably, we also demonstrated that c-Jun, a downstream effector of the JNK pathway, enhances miR-93-5p transcription by targeting its promoter region. Besides, downregulation of miR-93-5p significantly retarded tumor growth, while overexpression of miR-93-5p accelerated tumor growth in the HCC xenograft mouse model. Altogether, we revealed a miR-93-5p/MAP3K2/c-Jun positive feedback loop to promote HCC progression in vivo and in vitro, representing an RNA-activating role of miR-93-5p in HCC development.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , MAP Kinase Kinase Kinase 2/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins c-jun/metabolism , 3' Untranslated Regions , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Hep G2 Cells , Heterografts , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MAP Kinase Kinase Kinase 2/biosynthesis , MAP Kinase Kinase Kinase 2/genetics , Male , Mice , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , Phosphorylation , Promoter Regions, Genetic , Proto-Oncogene Proteins c-jun/genetics , Transfection , Up-Regulation
18.
Ann Surg Oncol ; 27(5): 1546-1557, 2020 May.
Article in English | MEDLINE | ID: mdl-32157528

ABSTRACT

BACKGROUND: The mechanistic target of rapamycin (mTOR) pathway, containing mTOR complex 1 (mTORC1) and mTORC2, is dysregulated in multiple cancers, including hepatocellular carcinoma (HCC). Mammalian lethal with sec-13 protein 8 (mLST8) is a shared constituent of both mTORC1 and mTORC2, yet little is known regarding its role in HCC development. METHODS: mLST8 expression was detected in a total of 186 pairs of HCC and adjacent non-tumor specimens. The correlation between mLST8 level and clinicopathological features or prognostic significance were analyzed. The role of mLST8 on biological functions was also preliminarily studied. RESULTS: The study revealed that the mLST8 level was dramatically higher in HCC specimens than in adjacent non-tumor specimens. mLST8 overexpression positively correlated with tumor size, differentiation, and vessel invasion. Cases with elevated mLST8 level had more unfavorable overall survival (OS) and disease-free survival (DFS) than those with downregulated mLST8 level. Multivariate analysis demonstrated that mLST8 upregulation was an independent predictive marker for OS and DFS. Calibration curves from nomogram models indicated an excellent coherence between nomogram prediction and actual situation. Decision curve analysis proved that mLST8-based nomograms presented much higher predictive accuracy when compared with conventional clinical staging systems. Mechanistically, mLST8 enhanced cell proliferation and invasion through the AKT (protein kinase B) pathway. CONCLUSIONS: Our study demonstrates that mLST8 exerts an oncogenic role in HCC and may become a promising prognostic biomarker and therapeutic target for HCC patients.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , mTOR Associated Protein, LST8 Homolog/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Disease-Free Survival , Female , Humans , Male , Middle Aged , Multivariate Analysis , Nomograms , Prognosis , Up-Regulation , Young Adult
19.
ACS Appl Mater Interfaces ; 12(15): 17193-17206, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32207914

ABSTRACT

Sorafenib, a multitargeted kinase inhibitor, has been reported to elicit a limited therapeutic effect in hepatocellular carcinoma (HCC). Currently, phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is emerging as a powerful modality for cancer therapy. However, few studies have been reported the effectiveness of the combination of sorafenib with PDT and PTT in HCC. Herein, we designed and synthesized bovine serum albumin (BSA)-coated zinc phthalocyanine (ZnPc) and sorafenib (SFB) nanoparticle (ZnPc/SFB@BSA). The obtained ZnPc/SFB@BSA was able to trigger PDT, PTT, and chemotherapy. After irradiation by a 730 nm light, ZnPc/SFB@BSA significantly suppressed HCC cell proliferation and metastasis while promoted cell apoptosis in vitro. Furthermore, intravenous injection of ZnPc/SFB@BSA led to dramatically reduced tumor growth in an orthotopic xenograft HCC model. More importantly, ZnPc/SFB@BSA presented low toxicity and adequate blood compatibility. Therefore, a combination of ZnPc with sorafenib via BSA-assembled nanoparticle can markedly suppress HCC growth, representing a promising strategy for HCC patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/therapy , Indoles/chemistry , Liver Neoplasms/therapy , Nanocapsules/chemistry , Organometallic Compounds/chemistry , Photosensitizing Agents/therapeutic use , Sorafenib/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Indoles/metabolism , Indoles/therapeutic use , Isoindoles , Light , Liver Neoplasms/drug therapy , Male , Mice , Mice, Nude , Organometallic Compounds/metabolism , Organometallic Compounds/therapeutic use , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Phototherapy , Reactive Oxygen Species , Serum Albumin, Bovine/chemistry , Sorafenib/metabolism , Sorafenib/therapeutic use , Xenograft Model Antitumor Assays , Zinc Compounds
20.
Aging (Albany NY) ; 12(3): 2373-2392, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32012120

ABSTRACT

Upregulated ubiquitin-conjugating enzyme E2M (UBE2M) is associated with poor prognosis in malignancies; However, the phenotype and mechanism of action of UBE2M in hepatocellular carcinoma (HCC) remain elusive. Here, we report that UBE2M is overexpressed and correlated with poor prognosis in HCC patients. The UBE2M level is an independent prognostic factor for HCC patients. UBE2M knockdown inhibits HCC cell proliferation, migration, and invasion, whereas its overexpression has an opposite effect. Mechanistically, upregulated UBE2M exerts oncogenic effects by translocation of accumulated ß-catenin from the cytoplasm to the nucleus, thus activating downstream ß-catenin/cyclin D1 signaling. In summary, our study demonstrates a notable role of UBE2M in promoting the growth of HCC, providing a novel strategy for HCC prevention and treatment.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cyclin D1/metabolism , Liver Neoplasms/pathology , Ubiquitin-Conjugating Enzymes/metabolism , beta Catenin/metabolism , Adult , Aged , Biomarkers, Tumor/analysis , Cell Proliferation/physiology , Female , Humans , Male , Middle Aged , Prognosis , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...