Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 392
Filter
1.
Heliyon ; 10(12): e33076, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948034

ABSTRACT

Oresitrophe is monotypic, with the only species, Oresitrophe rupifraga Bunge, which is exclusive to China, having special growth and developmental traits due to its habitat. Furthermore, it has bright flowers and medicinal benefits. This study investigated the metabolites present in various tissues of Oresitrophe rupifraga Bunge. Using a widely targeted metabolomics approach, 1965 different metabolites were identified in Oresitrophe rupifraga Bunge. Based on principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), the aboveground and underground metabolites of Oresitrophe rupifraga differed significantly. The comparison between bulblets and leaves revealed the differential expression of 461 metabolites, whereas the comparison between rhizomes and leaves showed the differential expression of 423 metabolites, and the comparison between bulblets and rhizomes showed the differential expression of 249 metabolites. The bulblets exhibited 49 metabolites that were higher and 412 metabolites that were lower than those of the leaves, whereas the rhizomes showed 123 upregulated and 300 downregulated metabolites. Bulblets showed an increase in 18 metabolites and a decrease in 231 metabolites compared to the rhizomes. Leaves contain more phenolic acids than the rhizomes and bulblets, whereas the rhizomes and bulblets contain more terpenoids than the leaves. KEGG pathway analysis showed an association between metabolites and metabolic pathways, as well as their effect on the progression and maturation of Oresitrophe rupifraga Bunge. The research findings can provide some insight into the growth and developmental traits of Oresitrophe rupifraga Bunge, thus providing a theoretical foundation for cultivating and utilising this plant.

2.
Microbiol Res ; 286: 127826, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964074

ABSTRACT

Humic acids (HAs) are organic macromolecules that play an important role in improving soil properties, plant growth and agronomic parameters. However, the feature of relatively complex aromatic structure makes it difficult to be degraded, which restricts the promotion to the crop growth. Thus, exploring microorganisms capable of degrading HAs may be a potential solution. Here, a HAs-degrading strain, Streptomyces rochei L1, and its potential for biodegradation was studied by genomics, transcriptomics, and targeted metabolomics analytical approaches. The results showed that the high molecular weight HAs were cleaved to low molecular aliphatic and aromatic compounds and their derivatives. This cleavage may be associated with the laccase (KatE). In addition, the polysaccharide deacetylase (PdgA) catalyzes the removal of acetyl groups from specific sites on the HAs molecule, resulting in structural changes. The field experiment showed that the degraded HAs significantly promote the growth of corn seedlings and increase the corn yield by 3.6 %. The HAs-degrading products, including aromatic and low molecular weight aliphatic substances as well as secondary metabolites from S. rochei L1, might be the key components responsible for the corn promotion. Our findings will advance the application of HAs as soil nutrients for the green and sustainable agriculture.


Subject(s)
Biodegradation, Environmental , Humic Substances , Soil Microbiology , Streptomyces , Zea mays , Streptomyces/metabolism , Streptomyces/growth & development , Streptomyces/genetics , Zea mays/growth & development , Zea mays/metabolism , Soil/chemistry , Laccase/metabolism , Metabolomics , Seedlings/growth & development , Seedlings/metabolism , Seedlings/microbiology
3.
Neuroscience ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053670

ABSTRACT

The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. Single-regional function analyses found evidence that the PRC, PHC, and HPC are activated ∼100 ms within the broad-gamma band and that the PRC was more strongly activated than either the PHC or the HPC after an object stimulus. Inter-reginal analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.

4.
Environ Res ; : 119637, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032620

ABSTRACT

Low-intensity ultrasound, as a form of biological enhancement technology, holds significant importance in the field of biological nitrogen removal. This study utilized low-intensity ultrasound (200 W, 6 min) to enhance partial nitrification and investigated its impact on sludge structure, as well as the internal relationship between structure and properties. The results demonstrated that ultrasound induced a higher concentration of nitrite in the effluent (40.16>24.48 mg/L), accompanied by a 67.76% increase in the activity of ammonia monooxygenase (AMO) and a 41.12% increase in the activity of hydroxylamine oxidoreductase (HAO), benefiting the partial nitrification. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theoretical analysis, ultrasonic treatment enhanced the electrostatic interaction energy (WR) between sludge flocs, raising the total interaction energy from 46.26 kT to 185.54 kT, thereby causing sludge dispersion. This structural alteration was primarily attributed to the fact that the tightly bonded extracellular polymer (TB-EPS) after ultrasound was found to increase hydrophilicity and negative charge, weakening the adsorption between sludge cells. In summary, this study elucidated that the change in sludge structure caused by ultrasonic treatment has the potential to enhance the nitrogen removal performance by partial nitrification.

5.
J Hazard Mater ; 476: 135030, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38944989

ABSTRACT

Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD. Detailed characterization data indicated that Fe, N-BC has an ordered mesoporous structure, high specific surface area (463.46 m2/g), and abundant redox functional groups (Fe2+/Fe3+, pyrrolic-N), which translate into excellent biocompatibility and electrochemical properties of Fe, N-BC. By adding Fe, N-BC, the stability and efficiency of the medium-temperature AD system in the treatment of methyl orange (MO) wastewater were improved: obtained a high degradation efficiency of MO (96.8 %) and enhanced the methane (CH4) production by 65 % compared to the control group. Meanwhile, Fe, N-BC reduced the accumulation of volatile fatty acids in the AD system, and the activity of anaerobic granular sludge electron transport system and coenzyme F420 was enhanced. In addition, Fe, N-BC showed positive enrichment of azo dyes decolorization bacteria (Georgenia) and direct interspecies electron transfer (DIET) synergistic partners (Syntrophobacter, Methanosarcina). Overall, the rapid degradation of MO and enhanced CH4 production in AD systems by Fe, N-BC is associated with enhancing two electronic pathways, i.e., microbes to MO and DIET between syntrophic bacteria and methanogenic archaea. This study introduced an enhanced "two-pathways of electron transfer" theory, realized by Fe, N-BC. These findings provided new insights into the interactions within AD systems and offer strategies for enhancing their performance with recalcitrant pollutants.

7.
Gels ; 10(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786221

ABSTRACT

It is difficult to plug the fracture water channeling of a fractured low-permeability reservoir during water flooding by using the conventional acrylamide polymer gel due to its weak mechanical properties. For this problem, micron graphite powder is added to enhance the comprehensive properties of the acrylamide polymer gel, which can improve the plugging effect of fracture water channeling. The chemical principle of this process is that the hydroxyl and carboxyl groups of the layered micron graphite powder can undergo physicochemical interactions with the amide groups of the polyacrylamide molecule chain. As a rigid structure, the graphite powder can support the flexible skeleton of the original polyacrylamide molecule chain. Through the synergy of the rigid and flexible structures, the viscoelasticity, thermal stability, tensile performance, and plugging ability of the new-type gel can be significantly enhanced. Compared with a single acrylamide gel, after adding 3000 mg/L of micrometer-sized graphite powder, the elastic modulus, the viscous modulus, the phase transition temperature, the breakthrough pressure gradient, the elongation at break, and the tensile stress of the acrylamide gel are all greatly improved. After adding the graphite powder to the polyacrylamide gel, the fracture water channeling can be effectively plugged. The characteristics of the networked water flow channel are obvious during the injected water break through the gel in the fracture. The breakthrough pressure of water flooding is high. The experimental results are an attempt to develop a new gel material for the water plugging of a fractured low-permeability reservoir.

8.
Sci Total Environ ; 933: 173074, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38734101

ABSTRACT

Rural domestic poses a significant challenge to treatment technologies due to significant fluctuations in both water quality, particularly in terms of carbon concentration, and quantity. Conventional biological technology, such as anaerobic-anoxic-oxic (A2O) systems, is inefficient. In this work, a continuous pilot-scale anoxic-anaerobic-anoxic-oxic (A3O) reactor with a moving bed biofilm reactor (MBBR) system was constructed and optimized to improve the treatment efficiency of rural domestic wastewater. The sludge return ratio, volume ratio of the oxic-to-anoxic zone (Voxi/Vano), step-feeding and hydraulic retention time (HRT) at low temperature were considered the main parameters for optimization. Microbial analysis was performed on both the mixed liquor and carrier of the A3O-MBBR system under initial and post-optimized conditions. The results indicated that the A3O-MBBR improved the treatment efficiency of rural domestic wastewater, especially for total phosphorus (TP), which increased by 20 % compared with that of the A2O-MBR. In addition, the removal efficiencies of nitrogen and phosphorus were further optimized, and the average concentrations of total nitrogen (TN) and TP in the effluent reached 2.46 and 0.364 mg/L, respectively, at a sludge reflux ratio of 100 or 150 %, Voxi/Vano =200 %, step-feeding of 0.5Q/0.5Q (anaerobic/anoxic) and HRT of 15 h at low temperature in the A3O-MBBR, which met standard A of GB18918-2002, China (TN < 15 mg/L, TP < 0.5 mg/L). The average rate of attaining the standard increased by 58.63 % (post optimization). The microbial analysis showed an increase in species diversity and richness after the parameters were optimized. Moreover, compared to the microbial community structure before optimization, the post-optimization exhibited a more stable microbial structure with a significant enrichment of functional bacteria. Defluviimonas, Novosphingobium and Bifidobacterium, considered as the dominant nitrification or denitrifying bacteria, were enriched in the suspended sludge of the MBBR reactor, which the relative abundance increased by 3.11 %, 3.84 %, and 3.24 %, respectively. Further analysis of the microbial community in the carrier revealed that the abundance of Nitrospira and the denitrifying bacteria carried by the carrier were much greater than those in the suspended sludge. Consequently, the microorganism cooperation between suspended sludge and biofilm might be responsible for the improved performance of the optimized A3O-MBBR.


Subject(s)
Biofilms , Bioreactors , Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Wastewater/microbiology , Anaerobiosis , Pilot Projects , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis
9.
Environ Res ; 252(Pt 3): 119013, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38701890

ABSTRACT

Both ultrasound and sludge retention time (SRT) enable the in-situ sludge reduction during wastewater treatment, but the influence of SRT on ultrasonic lysis - cryptic growth is unclear. This paper researched the influence of different SRTs on sludge lysis - cryptic growth using a sequential bio-reactor (SBR), then explained in details the changes of microorganisms in the SBR. The best SRT for sludge reduction was 30 d, and 47.29% reduction in sludge was achieved. The different SRTs changed the organic matter removal in the wastewater, and the removal rate decreased when SRT exceeded 60 d. The size of the sludge particles varied depending on the SRT, with the smallest size at SRT of 10d being 45.6 µm and the largest size at SRT of 90d being 110.0 µm. SEM showed that the sludge surface changed rough at longer SRT. FTIR and XPS showed notable effect in sludge functional group strength at SRT of 30 d. Extracellular polymeric substance (EPS) reduced the most at SRT of 30 d. The microbial communities of sludge varied with the SRT, and the unique main genus at SRT of 5, 15, 30 and 90 d were C10-SB1A, Lactococcus, Propioniciclava, Lactococcus, respectively. Furthermore, the SRT changed relative abundance of enzymes concerned with metabolism of carbon, nitrogen, and phosphorus. Similarly, SRT changed the metabolic rate, and the metabolic rate of carbon, nitrogen and phosphorus was best at SRT of 30 d.


Subject(s)
Bioreactors , Sewage , Waste Disposal, Fluid , Sewage/microbiology , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Microbiota , Bacteria/metabolism , Ultrasonic Waves
10.
Exp Neurol ; 378: 114814, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762094

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.


Subject(s)
Astrocytes , Brain Ischemia , Reperfusion Injury , Astrocytes/drug effects , Astrocytes/metabolism , Humans , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology
11.
Int J Biol Macromol ; 271(Pt 2): 132528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777009

ABSTRACT

The burgeoning interest in the versatile hydrogel matrix, with its multifarious applications, has spurred extensive research in recent years. However, the implementation of chemically crosslinked gels on a large-scale has been hindered by their poor biosafety and excessive energy consumption. To address these challenges, this study focuses on harnessing physical methods to engineer novel composite hydrogels utilizing natural polysaccharides Salecan and whey protein isolate, obviating the need for structural modification or chemical crosslinking. The aim was to explore the rheological properties to understand their multiple behaviors. Various models, including Power-Law, Herschel-Bulkley, and Arrhenius, were also employed to compare and analyze rheological parameters. This study holds significance as it is the pioneering report on the hydrogels fabricated from Salecan/Whey protein isolate. These gels possess favorable attributes encompassing optimized elasticity, thermal-stability, enhanced injectability, and self-recovery, rendering them suitable for a multitude of applications in the realms of food and biomedicine.


Subject(s)
Hydrogels , Rheology , Whey Proteins , Whey Proteins/chemistry , Hydrogels/chemistry , beta-Glucans/chemistry , Temperature
12.
Vaccine ; 42(19): 4030-4039, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38796326

ABSTRACT

We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Rotavirus Vaccines , Vaccines, Inactivated , Humans , Adult , Double-Blind Method , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Middle Aged , Young Adult , Adolescent , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/adverse effects , China , Immunogenicity, Vaccine , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus/immunology , Healthy Volunteers , Neutralization Tests
13.
World J Psychiatry ; 14(4): 553-562, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38659604

ABSTRACT

BACKGROUND: This study employs a descriptive phenomenological approach to investigate the challenges anesthesia nurses face in managing emergence delirium (ED), a common and complex postoperative complication in the post-anesthesia care unit. The role of nurses in managing ED is critical, yet research on their understanding and management strategies for ED is lacking. AIM: To investigate anesthetic nurses' cognition and management experiences of ED in hopes of developing a standardized management protocol. METHODS: This study employed a descriptive phenomenological approach from qualitative research methodologies. Purposeful sampling was utilized to select 12 anesthetic nurses from a tertiary hospital in Shanghai as research subjects. Semi-structured interviews were conducted, and the data were organized and analyzed using Colaizzi's seven-step analysis method, from which the final themes were extracted. RESULTS: After analyzing the interview content, four main themes and eight subthemes were distilled: Inefficient cognition hinders the identification of ED (conceptual ambiguity, empirical identification), managing diversity and challenges (patient-centered safe care, low level of medical-nursing collaboration), work responsibilities and pressure coexist (heavy work responsibilities, occupational risks and stress), demand for high-quality management (expecting the construction of predictive assessment tools and prevention strategies, and pursuing standardized management processes to enhance management effectiveness). CONCLUSION: Nursing managers should prioritize the needs and suggestions of nurses in order to enhance their nursing capabilities and provide guidance for standardized management processes.

14.
Eur J Pharmacol ; 971: 176539, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565342

ABSTRACT

Hypoxic-ischemic brain damage (HIBD) is a cerebral injury resulting from the combination of ischemia and hypoxia in neonatal brain tissue. Presently, there exists no efficacious remedy for HIBD. A mounting body of evidence indicates that dynamic metabolites formed during metabolic procedures assume a vital role in neuronal maturation and recuperation. However, it remains unclear whether any endogenous metabolites are involved in the pathogenesis of HIBD. Here, an untargeted metabolomics analysis was conducted by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry (GC/LC-MS) in OGD/R (oxygen-glucose deprivation/reoxygenation)-induced HT-22 cells. We observed that ferroptosis signaling plays an essential role in HI-induced neuronal injury. Interestingly, we also found that the differentially expressed metabolite, 2-phosphoglyceric acid, significantly improved the neuronal cell survival of OGD/R HT-22 cells by inhibiting ferroptosis. Moreover, 2-phosphoglyceric acid effectively rescued the cell activity of HT-22 cells treated with the ferroptosis inducer RSL-3. Furthermore, 2-phosphoglyceric acid alleviated cerebral infarction and reduced HIBD-induced neuronal cell loss of the central nervous system in neonatal rats by regulating GPX4 expression. Taken together, we found that 2-phosphoglyceric acid, which was downregulated in HT-22 cells induced by OGD/R, exerted neuronal protective effects on OGD/R-treated HT-22 cells and HIBD-induced neonatal rats by inhibiting hypoxic-ischemic-induced ferroptosis through the regulation of the GPX4/ACSL4 axis.


Subject(s)
Hypoxia-Ischemia, Brain , Rats , Animals , Animals, Newborn , Rats, Sprague-Dawley , Hypoxia-Ischemia, Brain/metabolism , Hypoxia/metabolism , Brain/metabolism
15.
Bioresour Technol ; 401: 130709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636877

ABSTRACT

Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature. Low-temperature shock experiment verified the positive effect of PVA/SA@Serratia on restoring the COD removal rate and methanogenesis capacity of AnGS. Further analysis by metagenomics analysis showed that PVA/SA@Serratia stimulated higher QS activity and promoted the secretion of extracellular polymeric substance (EPS) in AnGS. The rapid construction of EPS protective layer effectively accelerated the establishment of a robust microbial community structure. PVA/SA@Serratia also enhanced multiple methanogenic pathways, including direct interspecies electron transfer. In conclusion, this study demonstrated that PVA/SA@Serratia could effectively strengthen AnGS after low-temperature shock.


Subject(s)
Alginates , Cold Temperature , Polyvinyl Alcohol , Quorum Sensing , Sewage , Alginates/pharmacology , Alginates/chemistry , Polyvinyl Alcohol/chemistry , Sewage/microbiology , Anaerobiosis , Methane/metabolism
16.
Viruses ; 16(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38675964

ABSTRACT

Rotavirus (RV) is the main pathogen that causes severe diarrhea in infants and children under 5 years of age. No specific antiviral therapies or licensed anti-rotavirus drugs are available. It is crucial to develop effective and low-toxicity anti-rotavirus small-molecule drugs that act on novel host targets. In this study, a new anti-rotavirus compound was selected by ELISA, and cell activity was detected from 453 small-molecule compounds. The anti-RV effects and underlying mechanisms of the screened compounds were explored. In vitro experimental results showed that the small-molecule compound ML241 has a good effect on inhibiting rotavirus proliferation and has low cytotoxicity during the virus adsorption, cell entry, and replication stages. In addition to its in vitro effects, ML241 also exerted anti-RV effects in a suckling mouse model. Transcriptome sequencing was performed after adding ML241 to cells infected with RV. The results showed that ML241 inhibited the phosphorylation of ERK1/2 in the MAPK signaling pathway, thereby inhibiting IκBα, activating the NF-κB signaling pathway, and playing an anti-RV role. These results provide an experimental basis for specific anti-RV small-molecule compounds or compound combinations, which is beneficial for the development of anti-RV drugs.


Subject(s)
Antiviral Agents , Rotavirus Infections , Rotavirus , Virus Replication , Rotavirus/drug effects , Rotavirus/physiology , Animals , Mice , Rotavirus Infections/drug therapy , Rotavirus Infections/virology , Virus Replication/drug effects , Humans , Antiviral Agents/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , NF-kappa B/metabolism , Phosphorylation , Mice, Inbred BALB C , Cell Line , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects
17.
Int J Gen Med ; 17: 1117-1125, 2024.
Article in English | MEDLINE | ID: mdl-38532846

ABSTRACT

Objective: This study aims to investigate the correlation between vascular endothelium-dependent diastolic function (FMD) and the degree of coronary artery disease (CAD), plaque vulnerability, and its predictive value for cardiovascular events. Methods: Initially, patients (n=100) who were admitted from January 2020 to January 2021 and intended to undergo percutaneous coronary intervention (PCI) were selected. Further, FMD in all patients was determined before the procedure and divided into a high-FMD group (≥4.2%) and a low-FMD group (<4.2%). Further, the data of two groups, including general information, coronary artery lesions, and plaque fibrous cap, were compared. Finally, the relationship between FMD and the degree of coronary artery lesions and plaque vulnerability was analyzed. Results: No significant differences were observed concerning general information, number of coronary arteries-associated branches, lesion type, involvement of the left main stem (LM), the proportion of chronic occluded lesions (CTO), and lipid pool angle between the low-FMD group and the high-FMD group (P > 0.05). Nevertheless, the degree of stenosis of the lesions in the low-FMD group was significantly higher than in the high-FMD group (P < 0.05). In addition, the thickness of the fibrous cap was considerably lower than that in the high-FMD group (P < 0.05). Moreover, the incidence rate of TCFA was significantly higher than the high-FMD group (P < 0.05). The correlation analysis showed that FMD was significantly negatively correlated with the degree of coronary artery lesion stenosis and TCFA (P < 0.05) and positively correlated with the fibrous cap thickness (P < 0.05). Conclusion: Overall, a negative correlation between FMD and the degree of coronary stenosis, plaque vulnerability, and a high predictive value for post-PCI cardiovascular events suggested that FMD could be a critical diagnostic marker for CAD.

18.
J Hazard Mater ; 470: 134152, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552398

ABSTRACT

Soil contamination by emerging pollutants tetrabromobisphenol A (TBBPA) and microplastics has become a global environmental issue in recent years. However, little is known about the effect of microplastics on degradation of TBBPA in soil, especially aged microplastics. In this study, the effect of aged polystyrene (PS) microplastics on the degradation of TBBPA in soil and the mechanisms were investigated. The results suggested that the aged microplastics exhibited a stronger inhibitory effect on the degradation of TBBPA in soil than the pristine microplastics, and the degradation efficiency of TBBPA decreased by 21.57% at the aged microplastic content of 1%. This might be related to the higher TBBPA adsorption capacity of aged microplastics compared to pristine microplastics. Aged microplastics strongly altered TBBPA-contaminated soil properties, reduced oxidoreductase activity and affected microbial community composition. The decrease in soil oxidoreductase activity and relative abundance of functional microorganisms (e.g., Bacillus, Pseudarthrobacter and Sphingomonas) caused by aged microplastics interfered with metabolic pathways of TBBPA. This study indicated the importance the risk assessment and soil remediation for TBBPA-contaminated soil with aged microplastics.


Subject(s)
Biodegradation, Environmental , Microplastics , Polybrominated Biphenyls , Polystyrenes , Soil Microbiology , Soil Pollutants , Polystyrenes/chemistry , Polybrominated Biphenyls/toxicity , Microplastics/toxicity , Soil Pollutants/toxicity , Soil Pollutants/chemistry , Oxidoreductases/metabolism , Soil/chemistry , Adsorption
19.
Asian J Surg ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38453610

ABSTRACT

According to previous studies, D-dimer levels are associated with the prognosis of patients with pancreatic cancer (PC). However, the results of current studies are limited and controversial. Therefore, we performed this meta-analysis to assess the relationship between D-dimer levels and prognostic and pathological characteristics of PC patients. We first searched the databases of PubMed, Embase, The Cochrane Library, Web Of Science, CBM, VIP, CNKI and Wanfang to identify available studies. The relationship between pretreatment d-dimer levels and prognosis in PC patients was assessed using the combined hazard ratio (HR) and 95% confidence interval (CI). The combined odds ratio (OR) and 95% confidence interval (CI) were used in assessing the relationship between pathological characteristics and d-dimer levels in PC patients. Stata 12.0 software was used for all statistical analyses. In total, we included 13 studies involving 2777 patients. The results showed that elevated pre-treatment d -dimer levels were significantly associated with OS deterioration (HR = 1.46 95% CI: 1.34-1.59; p < 0.001). We also performed subgroup analyses based on sample size, d -dimer threshold, follow-up time, and HR source to further validate the prognostic value of pretreatment d -dimer levels in PC. In addition, according to the analysis, high pretreatment d -dimer levels in PC patients were associated with late tumor stage (OR = 4.78, 95% CI 1.73-13.20, p < 0. 005), larger tumor size (OR = 1.72, 95% CI 1.25-2.35, p < 0.005), and distant metastasis of tumor (OR = 5.06, 95% CI 2.45-10.43, p < 0.005) were significantly associated. In contrast, other clinicopathological factors, including age, gender and lymph node metastasis, were not associated with d-dimer levels. In conclusion, we found that high pre-treatment d-dimer levels were associated with a poor prognosis in PC patients, in relation to later tumor stage, larger tumor size and the development of distant metastases. Plasma d-dimer levels can be used as a biomarker of prognosis in PC patients.

20.
Environ Res ; 251(Pt 1): 118596, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38442810

ABSTRACT

n-Caproic acid is a widely used biochemical that can be produced from organic waste through chain elongation technology. This study aims to evaluate the environmental impacts of n-caproic acid production through chain elongation by two processes (i.e., shunting and staged technology). The Open-life cycle assessment (LCA) model was used to calculate the environmental impacts of both technologies based on experimental data. Results showed that the shunting technology had higher environmental impacts than the staged technology. Water and electricity made bigger contribution to the environmental impacts of both technologies. Reusing chain elongation effluent substituting for water and using electricity produced by wind power could reduce the environmental impacts of water and electricity effectively. Using ethanol from food waste had higher global warming potential than fossil ethanol, which suggested that a cradle-to-grave LCA is needed to be carried out for specific raw materials and chain elongation products in the future.


Subject(s)
Environment , Food Loss and Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...