Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 671
Filter
1.
Case Rep Infect Dis ; 2024: 5361758, 2024.
Article in English | MEDLINE | ID: mdl-38784432

ABSTRACT

As a respiratory tract-transmitted disease, coronavirus disease 2019 (COVID-19) exerts a profound immune injury effect, leading not only to pulmonary impairment but also to cardiac complications. We present a case of a 79-year-old woman, who had previously contracted COVID-19 and subsequently developed sinus arrest (SA) following her second infection. The longest asystole time detected by Holter monitoring was 7.2 seconds. Although the patient met criteria for permanent pacemaker implantation, her family declined this intervention and conservative management was pursued instead. However, after a period of observation, the patient's SA resolved. The present case study describes a patient who experienced SA upon reinfection with COVID-19, which was not present during the initial infection. It emphasizes the impact of COVID-19 on cardiac health, particularly its potential to induce arrhythmias. In addition, it is worth noting that the arrhythmia induced by a COVID-19 infection may show reversibility, suggesting that a permanent pacemaker might not be the priority option if further pacing therapy is being considered.

2.
Adv Sci (Weinh) ; : e2309992, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774946

ABSTRACT

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.

3.
BMC Plant Biol ; 24(1): 431, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773421

ABSTRACT

BACKGROUND: The flower colour of H. syriacus 'Qiansiban' transitions from fuchsia to pink-purple and finally to pale purple, thereby enhancing the ornamental value of the cultivars. However, the molecular mechanism underlying this change in flower colour in H. syriacus has not been elucidated. In this study, the transcriptomic data of H. syriacus 'Qiansiban' at five developmental stages were analysed to investigate the impact of flavonoid components on flower colour variation. Additionally, five cDNA libraries were constructed from H. syriacus 'Qiansiban' during critical blooming stages, and the transcriptomes were sequenced to investigate the molecular mechanisms underlying changes in flower colouration. RESULTS: High-performance liquid chromatography‒mass spectrometry detected five anthocyanins in H. syriacus 'Qiansiban', with malvaccin-3-O-glucoside being the predominant compound in the flowers of H. syriacus at different stages, followed by petunigenin-3-O-glucoside. The levels of these five anthocyanins exhibited gradual declines throughout the flowering process. In terms of the composition and profile of flavonoids and flavonols, a total of seven flavonoids were identified: quercetin-3-glucoside, luteolin-7-O-glucoside, Santianol-7-O-glucoside, kaempferol-O-hexosyl-C-hexarbonoside, apigenin-C-diglucoside, luteolin-3,7-diglucoside, and apigenin-7-O-rutinoside. A total of 2,702 DEGs were identified based on the selected reference genome. Based on the enrichment analysis of differentially expressed genes, we identified 9 structural genes (PAL, CHS, FLS, DRF, ANS, CHI, F3H, F3'5'H, and UFGT) and 7 transcription factors (3 MYB, 4 bHLH) associated with flavonoid biosynthesis. The qRT‒PCR results were in good agreement with the high-throughput sequencing data. CONCLUSION: This study will establish a fundamental basis for elucidating the mechanisms underlying alterations in the flower pigmentation of H. syriacus.


Subject(s)
Anthocyanins , Flavonoids , Flowers , Hibiscus , Metabolome , Transcriptome , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Hibiscus/genetics , Hibiscus/metabolism , Hibiscus/growth & development , Flavonoids/metabolism , Anthocyanins/metabolism , Pigmentation/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Color
4.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735951

ABSTRACT

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Porcine epidemic diarrhea virus , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Limit of Detection , Immunoassay/methods , Immunoassay/instrumentation , Antibodies, Monoclonal/immunology , Transistors, Electronic , Swine Diseases/diagnosis , Swine Diseases/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/analysis , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/immunology , Equipment Design
5.
Clin Neurol Neurosurg ; 241: 108306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713962

ABSTRACT

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a type of inherited metabolic disorder caused by mutation in the PANK2 gene. The metabolic disorder mainly affects the basal ganglia region and eventually manifests as dystonia. For patients of dystonia, their dystonic symptom may progress to life-threatening emergency--status dystonicus. OBJECTIVE: We described a case of a child with PKAN who had developed status dystonicus and was successfully treated with deep brain stimulation (DBS). Based on this rare condition, we analysed the clinical features of PKAN with status dystonicus and reviewed the reasonable management process of this condition. CONCLUSION: This case confirmed the rationality of choosing DBS for the treatment of status dystonicus. Meanwhile, we found that children with classic PKAN have a cluster of risk factors for developing status dystonicus. Once children diagnosed with similar neurodegenerative diseases are under status dystonicus, DBS can be active considered because it has showed high control rate of this emergent condition.


Subject(s)
Deep Brain Stimulation , Pantothenate Kinase-Associated Neurodegeneration , Humans , Pantothenate Kinase-Associated Neurodegeneration/genetics , Deep Brain Stimulation/methods , Male , Child , Dystonia/therapy , Female , Dystonic Disorders/therapy , Dystonic Disorders/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics
6.
Heliyon ; 10(10): e30730, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784548

ABSTRACT

Neurogenesis, play a vital role in neuronal plasticity of adult mammalian brains, and its dysregulation is present in the pathophysiology of Parkinson's disease (PD). While subthalamic nucleus deep brain stimulation (STN-DBS) at various frequencies has been proven effective in alleviating PD symptoms, its influence on neurogenesis remains unclear. This study aimed to investigate the effects of 1-week electrical stimulation at frequencies of 60Hz, 130Hz, and 180Hz on neurogenesis in the subventricular zone (SVZ) of PD rats. A hemiparkinsonian rat model was established using 6-hydroxydopamine and categorized into six groups: control, PD, sham stimulation, 60Hz stimulation, 130Hz stimulation, and 180Hz stimulation. Motor function was assessed using the open field test and rotarod test after one week of STN-DBS at different frequencies. Tyrosine hydroxylase (TH) expression in brain tissue was analyzed via Western blot and immunohistochemistry. Immunofluorescence analysis was conducted to evaluate the expression of BrdU/Sox2, BrdU/GFAP, Ki67/GFAP, and BrdU/DCX in bilateral SVZ and the rostral migratory stream (RMS). Our findings revealed that high-frequency STN-DBS improved motor function. Specifically, stimulation at 130Hz increased dopaminergic neuron survival in the PD rat model, while significantly enhancing the proliferation of neural stem cells (NSCs) and neuroblasts in bilateral SVZ. Moreover, this stimulation effectively facilitated the generation of new NSCs in the ipsilateral RMS and triggered the emergence of fresh neuroblasts in bilateral RMS, with notable presence within the lesioned striatum. Conversely, electrical stimulation at 60Hz and 180Hz did not exhibit comparable effects. The observed promotion of neurogenesis in PD rats following STN-DBS provides valuable insights into the mechanistic basis of this therapeutic approach for PD.

7.
ACS Biomater Sci Eng ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752382

ABSTRACT

Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.

8.
Ecotoxicol Environ Saf ; 278: 116403, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710145

ABSTRACT

RATIONALE: Diesel engine exhaust (DEE) is associated with the development and exacerbation of asthma. Studies have shown that DEE can aggravate allergen-induced eosinophilic inflammation in lung. However, it remains not clear that whether DEE alone could initiate non-allergic eosinophilic inflammation and airway hyperresponsiveness (AHR) through innate lymphoid cells (ILCs) pathway. OBJECTIVE: This study aims to investigate the airway inflammation and hyperresponsiveness and its relationship with ILC after DEE exposure. METHOD: Non-sensitized BALB/c mice were exposed in the chamber of diesel exhaust or filtered air for 2, 4, and 6 weeks (4 h/day, 6 days/week). Anti-CD4 mAb or anti-Thy1.2 mAb was administered by intraperitoneal injection to inhibit CD4+T or ILCs respectively. AHR、airway inflammation and ILCs were assessed. RESULT: DEE exposure induced significantly elevated level of neutrophils, eosinophils, collagen content at 4, 6 weeks. Importantly, the airway AHR was only significant in the 4weeks-DEE exposure group. No difference of the functional proportions of Th2 cells was found between exposure group and control group. The proportions of IL-5+ILC2, IL-17+ILC significantly increased in 2, 4weeks-DEE exposure group. After depletion of CD4+T cells, both the proportion of IL-5+ILC2 and IL-17A ILCs was higher in the 4weeks-DEE exposure group which induced AHR, neutrophilic and eosinophilic inflammation accompanied by the IL-5, IL-17A levels. CONCLUSION: Diesel engine exhaust alone can imitate asthmatic characteristics in mice model. Lung-resident ILCs are one of the major effectors cells responsible for a mixed Th2/Th17 response and AHR.


Subject(s)
Air Pollutants , Lymphocytes , Mice, Inbred BALB C , Vehicle Emissions , Animals , Vehicle Emissions/toxicity , Mice , Lymphocytes/drug effects , Lymphocytes/immunology , Air Pollutants/toxicity , Inflammation/chemically induced , Eosinophils/immunology , Eosinophils/drug effects , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/chemically induced , Female , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Male
9.
Micromachines (Basel) ; 15(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675325

ABSTRACT

Real-time DOA (direction of arrival) estimation of surface or underwater targets is of great significance to the research of marine environment and national security protection. When conducting real-time DOA estimation of underwater targets, it can be difficult to extract the prior characteristics of noise due to the complexity and variability of the marine environment. Therefore, the accuracy of target orientation in the absence of a known noise is significantly reduced, thereby presenting an additional challenge for the DOA estimation of the marine targets in real-time. Aiming at the problem of real-time DOA estimation of acoustic targets in complex environments, this paper applies the MEMS vector hydrophone with a small size and high sensitivity to sense the conditions of the ocean environment and change the structural parameters in the adaptive adjustments system itself to obtain the desired target signal, proposes a signal processing method when the prior characteristics of noise are unknown. Theoretical analysis and experimental verification show that the method can achieve accurate real-time DOA estimation of the target, achieve an error within 3.1° under the SNR (signal-to-noise ratio) of the X channel of -17 dB, and maintain a stable value when the SNR continues to decrease. The results show that this method has a very broad application prospect in the field of ocean monitoring.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124335, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38663130

ABSTRACT

Pancytopenia is a common blood disorder defined as the decrease of red blood cells, white blood cells and platelets in the peripheral blood. Its genesis mechanism is typically complex and a variety of diseases have been found to be capable of causing pancytopenia, some of which are featured by their high mortality rates. Early judgement on the cause of pancytopenia can benefit timely and appropriate treatment to improve patient survival significantly. In this study, a serum surface-enhanced Raman spectroscopy (SERS) method was explored for the early differential diagnosis of three pancytopenia related diseases, i.e., aplastic anemia (AA), myelodysplastic syndrome (MDS) and spontaneous remission of pancytopenia (SRP), in which the patients with those pancytopenia related diseases at initial stage exhibited same pancytopenia symptom but cannot be conclusively diagnosed through conventional clinical examinations. The SERS spectral analysis results suggested that certain amino acids, protein substances and nucleic acids are expected to be potential biomarkers for their early differential diagnosis. In addition, a diagnostic model was established based on the joint use of partial least squares analysis and linear discriminant analysis (PLS-LDA), and an overall accuracy of 86.67 % was achieved to differentiate those pancytopenia related diseases, even at the time that confirmed diagnosis cannot be made by routine clinical examinations. Therefore, the proposed method has demonstrated great potential for the early differential diagnosis of pancytopenia related diseases, thus it has significant clinical importance for the timely and rational guidance on subsequent treatment to improve patient survival.


Subject(s)
Pancytopenia , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Pancytopenia/diagnosis , Pancytopenia/blood , Diagnosis, Differential , Discriminant Analysis , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/blood , Female , Least-Squares Analysis , Middle Aged , Male , Early Diagnosis , Adult , Anemia, Aplastic/diagnosis , Anemia, Aplastic/blood , Aged
11.
Polymers (Basel) ; 16(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611170

ABSTRACT

In order to improve the preparation efficiency, quality stability, and large-area preparation of superhydrophobic thin films, a roll-to-roll continuous micro-nano imprinting method for the efficient preparation of superhydrophobic polymer films is proposed. A wear-resistant mold roller with hierarchical microstructure is prepared by wire electrical discharge machining (WEDM). The rheological filling model is constructed for revealing the forming mechanism of superhydrophobic polymer films during continuous micro/nano imprinting. The effects of imprinting temperature, rolling speed and the surface texture size of the template on the surface texture formation rate of polymer films are analyzed. The experimental results show that, compared with other process methods, the template processed by WEDM shows excellent wear resistance. Moreover, the optimal micro/nano imprinting parameters are the mold temperature of 190 °C (corresponding film temperature of 85 ± 5 °C), rolling speed of 3 rpm and roller gap of 0.1 mm. The maximum contact angle of the polymer film is 154°. In addition, the superhydrophobic polymer thin film has been proven to have good self-cleaning and anti-icing performance.

12.
BMC Cancer ; 24(1): 382, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532345

ABSTRACT

Polymeric micelle systems for drug delivery, monitor and chemotherapy have gained significant attention, and reductive polymeric micelle systems have become particularly attractive due to their controlled release behavior without additional assistance. However, there are challenges in accurately controlling drug and probe release from the nanoparticles and determining the loading content of drug and probe. To address these issues, we have developed a reduction-responsive Pt(IV) prodrug-based polymeric delivery system that can be dynamically monitored using aggregation-induced emission luminogens (AIE) based bioprobes. These polymeric micelle can self-assemble into nanoparticles and release both bio-active Pt(II) drug and bio-probe upon reduction activation. TPE molecules released in the inner endo/lysosomal microenvironment aggregate and fluoresce upon irradiation, thus allowing real-time tracking of drug biodistribution without additional contrast agents. Advantages of this system include position-specific chemical bond cleavage, control of platinum content, and monitoring of drug reduction and biodistribution.


Subject(s)
Nanoparticles , Prodrugs , Humans , Prodrugs/pharmacology , Micelles , Tissue Distribution , Drug Delivery Systems , Polymers/chemistry , Nanoparticles/chemistry
13.
Ann Clin Transl Neurol ; 11(5): 1184-1196, 2024 May.
Article in English | MEDLINE | ID: mdl-38425144

ABSTRACT

OBJECTIVE: Neuromyelitis optica (NMO) was a serious autoimmune inflammatory condition affecting the central nervous system. Currently, there was a lack of diagnostic biomarkers for AQP4-IgG-negative NMO patients. METHODS: A comparative proteomic analysis was conducted on the CSF of 10 patients with NMO and 10 patients with non-inflammatory neurological disorders (NND) using tandem mass tagging technology. Differentially expressed proteins (DEPs) were analyzed using bioinformatic methods. The candidate proteins were then validated through ELISAs in a subsequent cohort of 160 samples, consisting of paired CSF and plasma samples from 50 NMO patients, CSF samples from 30 NND patients, and plasma samples from 30 healthy individuals. RESULTS: We identified 389 proteins via proteomics, screening 79 DEPs. NCAM1, SST and AHSG were selected as candidate molecules for further validation. Compared to NND patients, there were decreased levels of AHSG in CSF and increased levels of NCAM1 and SST in NMO patients. The ELISA results revealed significantly higher levels of AHSG, SST and NCAM1 in the CSF of the NMO group compared to the NND group. Similarly, the serum levels of these three proteins were also higher in the NMO group compared to the healthy control group. It was found that serum NCAM1 levels significantly decreased in patients with non-relapsed NMO compared to patients with relapsed NMO and CSF NCAM1 level increased in patients with bilateral NMO compared to patients with unilateral NMO. Furthermore, CSF SST levels increased in AQP4 antibody-positive NMO patients compared to AQP4 antibody-negative patients. INTERPRETATION: CSF NCAM1, serum NCAM1 and serum SST may serve as potential biomarkers for NMO patients and aid in the diagnosis of AQP4 antibody-negative NMO patients.


Subject(s)
Biomarkers , Neuromyelitis Optica , Proteomics , Humans , Neuromyelitis Optica/blood , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/diagnosis , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Female , Adult , Proteomics/methods , Male , Middle Aged , CD56 Antigen/blood , Aquaporin 4/immunology , Aquaporin 4/blood
14.
Front Mol Neurosci ; 17: 1222935, 2024.
Article in English | MEDLINE | ID: mdl-38495551

ABSTRACT

This study reports on biallelic homozygous and monoallelic de novo variants in SLITRK3 in three unrelated families presenting with epileptic encephalopathy associated with a broad neurological involvement characterized by microcephaly, intellectual disability, seizures, and global developmental delay. SLITRK3 encodes for a transmembrane protein that is involved in controlling neurite outgrowth and inhibitory synapse development and that has an important role in brain function and neurological diseases. Using primary cultures of hippocampal neurons carrying patients' SLITRK3 variants and in combination with electrophysiology, we demonstrate that recessive variants are loss-of-function alleles. Immunostaining experiments in HEK-293 cells showed that human variants C566R and E606X change SLITRK3 protein expression patterns on the cell surface, resulting in highly accumulating defective proteins in the Golgi apparatus. By analyzing the development and phenotype of SLITRK3 KO (SLITRK3-/-) mice, the study shows evidence of enhanced susceptibility to pentylenetetrazole-induced seizure with the appearance of spontaneous epileptiform EEG as well as developmental deficits such as higher motor activities and reduced parvalbumin interneurons. Taken together, the results exhibit impaired development of the peripheral and central nervous system and support a conserved role of this transmembrane protein in neurological function. The study delineates an emerging spectrum of human core synaptopathies caused by variants in genes that encode SLITRK proteins and essential regulatory components of the synaptic machinery. The hallmark of these disorders is impaired postsynaptic neurotransmission at nerve terminals; an impaired neurotransmission resulting in a wide array of (often overlapping) clinical features, including neurodevelopmental impairment, weakness, seizures, and abnormal movements. The genetic synaptopathy caused by SLITRK3 mutations highlights the key roles of this gene in human brain development and function.

15.
Int J Nanomedicine ; 19: 2591-2610, 2024.
Article in English | MEDLINE | ID: mdl-38505167

ABSTRACT

Extracellular vesicles can transmit intercellular information and transport biomolecules to recipient cells during various pathophysiological processes in the organism. Animal cell exosomes have been identified as potential nanodrugs delivery vehicles, yet they have some shortcomings such as high immunogenicity, high cytotoxicity, and complicated preparation procedures. In addition to exosomes, plant-derived extracellular vesicles (PDVs), which carry a variety of active substances, are another promising nano-transport vehicles emerging in recent years due to their stable physicochemical properties, wide source, and low cost. This work briefly introduces the collection and characterization of PDVs, then focuses on the application of PDVs as natural or engineered drug carriers in biomedicine, and finally discusses the development and challenges of PDVs in future applications.


Subject(s)
Exosomes , Extracellular Vesicles , Animals , Drug Delivery Systems/methods , Drug Carriers
16.
Anal Chim Acta ; 1297: 342351, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438235

ABSTRACT

Cholesterol is an important lipid compound found in a variety of foods, and its level in human blood is closely related to human health. Therefore, development of rapid and accurate POCT (point-of-care testing) methods for cholesterol detection is crucial for assessing food quality and early diagnosis of diseases, in particular, in a resource-limited environment. In this study, a smartphone-assisted colorimetric biosensor is constructed based on platinum,phosphorus-codoped carbon nitride (PtCNP2) for the rapid detection of cholesterol. Phosphorus-doped carbon nitride is prepared by thermal annealing of urea and NH4PF6, into which platinum is atomically dispersed by thermal refluxing. The obtained PtCNP2 exhibits an excellent peroxidase-like activity under physiological pH, whereby colorless o-phenylenediamine (OPD) is oxidized to colored 2,3-diaminophenazine (DAP) in the presence of hydrogen peroxide (H2O2), which can be produced during the oxidation of cholesterol by cholesterol oxidase. A smartphone-assisted visual sensing system is then constructed based on the color recognition software, and rapid on-site detection of cholesterol is achieved by reading the RGB values. Meanwhile, the generated DAP shows an apparent fluorescence signal and can realize highly sensitive detection of cholesterol by the change of the fluorescence signal intensity. Such a cholesterol sensor exhibits a wide linear detection range of 0.5-600 µg mL-1 and a low detection limit of 59 ng mL-1. The practicality of the sensor is successfully demonstrated in the rapid detection of cholesterol in serum and food.


Subject(s)
Colorimetry , Hydrogen Peroxide , Nitriles , Humans , Platinum , Cholesterol , Phosphorus
17.
Micromachines (Basel) ; 15(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38398937

ABSTRACT

This paper presents the design and development of a high-resolution 3D ultrasound imaging system based on a 1 × 256 piezoelectric ring array, achieving an accuracy of 0.1 mm in both ascending and descending modes. The system achieves an imaging spatial resolution of approximately 0.78 mm. A 256 × 32 cylindrical sensor array and a digital phantom of breast tissue were constructed using the k-Wave toolbox. The signal is acquired layer by layer using 3D acoustic time-domain simulation, resulting in the collection of data from each of the 32 layers. The 1 × 256 ring array moves on a vertical trajectory from the chest wall to the nipple at a constant speed. A data set was collected at intervals of 1.5 mm, resulting in a total of 32 data sets. Surface rendering and volume rendering algorithms were used to reconstruct 3D ultrasound images from the volume data obtained via simulation so that the smallest simulated reconstructed lesion had a diameter of 0.3 mm. The reconstructed three-dimensional image derived from the experimental data exhibits the contour of the breast model along with its internal mass. Reconstructable dimensions can be achieved up to approximately 0.78 mm. The feasibility of applying the system to 3D breast ultrasound imaging has been demonstrated, demonstrating its attributes of resolution, precision, and exceptional efficiency.

19.
Environ Sci Pollut Res Int ; 31(13): 19699-19714, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366316

ABSTRACT

Urbanization and agricultural land use have led to water quality deterioration. Studies have been conducted on the relationship between landscape patterns and river water quality; however, the Wuding River Basin (WDRB), which is a complex ecosystem structure, is facing resource problems in river basins. Thus, the multi-scale effects of landscape patterns on river water quality in the WDRB must be quantified. This study explored the spatial and seasonal effects of land use distribution on river water quality. Using the data of 22 samples and land use images from the WDRB for 2022, we quantitatively described the correlation between river water quality and land use at spatial and seasonal scales. Stepwise multiple linear regression (SMLR) and redundancy analyses (RDA) were used to quantitatively screen and compare the relationships between land use structure, landscape patterns, and water quality at different spatial scales. The results showed that the sub-watershed scale is the best spatial scale model that explains the relationship between land use and water quality. With the gradual narrowing of the spatial scale range, cultivated land, grassland, and construction land had strong water quality interpretation abilities. The influence of land use type on water quality parameter variables was more distinct in rainy season than in the dry season. Therefore, in the layout of watershed management, reasonably adjusting the proportion relationship of vegetation and artificial building land in the sub-basin scale and basin scope can realize the effective control of water quality optimization.


Subject(s)
Environmental Monitoring , Water Quality , Environmental Monitoring/methods , Ecosystem , Rivers/chemistry , China
20.
Anal Chem ; 96(8): 3454-3461, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38359782

ABSTRACT

Estrogen receptor α (ERα) is an important biomarker in breast cancer diagnosis and treatment. Sensitive and accurate detection of ERα protein expression is crucial in guiding selection of an appropriate therapeutic strategy to improve the effectiveness and prognosis of breast cancer treatment. Herein, we report a liquid-gated graphene field-effect transistor (FET) biosensor that enables rapid, sensitive, and label-free detection of the ERα protein by employing a novel drug molecule as a capture probe. The drug molecule was synthesized and subsequently immobilized onto the sensing surface of the fabricated graphene FET, which was able to distinguish the ERα-positive from the ERα-negative protein. The developed sensor not only demonstrated a low detection limit (LOD: 2.62 fM) but also achieved a fast response to ERα protein samples within 30 min. Moreover, depending on the relationship between the change of dirac point and the ERα protein concentrations, the dissociation constant (Kd) was estimated to be 7.35 ± 0.06 pM, indicating that the drug probe-modified graphene FET had a good affinity with ERα protein. The nanosensor was able to analyze ERα proteins from 36 cell samples lysates. These results show that the graphene FET sensor was able to differentiate between ERα-positive and ERα-negative cells, indicating a promising biosensor for the ultrasensitive and rapid detection of ERα protein without antibody labeling.


Subject(s)
Biosensing Techniques , Graphite , Limit of Detection , Estrogen Receptor alpha , Transistors, Electronic , Biomarkers , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...