Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 681
Filter
1.
Bioelectrochemistry ; 160: 108771, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972158

ABSTRACT

MiRNA-21 is recognized as an important biological marker for the diagnosis, treatment, and prognosis of breast cancer. Here, we have created a nanochannel biosensor utilizing the duplex-specific nuclease (DSN) signal amplification strategy to achieve the detection of miRNAs. In this system, DNA as the capture probe was covalently immobilized on the surface of nanochannels, which hybridized with the target miRNA and forms RNA/DNA duplexes. DSN could cleave the probe DNA in RNA/DNA duplexes, recycling target miRNA, which may again hybridized with other DNA probes. After N cycles, most of the DNA probes had been cleaved, and the content of miRNA could be quantified by detecting changes in surface charge density. This biosensor can distinguish miR-21 from non-complementary miRNAs and one-base mismatched miRNAs, with reliable detection limits as low as 1 fM in PBS. In addition, we had successfully applied this method to analysis of total RNA samples in MCF-7 cells and HeLa cells, and the nanochannels had also shown excellent responsiveness and strong anti-interference ability. This new method is expected to contribute to miRNA detection in clinical diagnostics, providing a unique approach to detecting and distinguishing disease-associated molecules.

2.
Heliyon ; 10(12): e32709, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975148

ABSTRACT

Background: Machine learning has shown to be an effective method for early prediction and intervention of Gestational diabetes mellitus (GDM), which greatly decreases GDM incidence, reduces maternal and infant complications and improves the prognosis. However, there is still much room for improvement in data quality, feature dimension, and accuracy. The contributions and mechanism explanations of clinical data at different pregnancy stages to the prediction accuracy are still lacking. More importantly, current models still face notable obstacles in practical applications due to the complex and diverse input features and difficulties in redeployment. As a result, a simple, practical but accurate enough model is urgently needed. Design and methods: In this study, 2309 samples from two public hospitals in Shenzhen, China were collected for analysis. Different algorithms were systematically compared to build a robust and stepwise prediction system (level A to C) based on advanced machine learning, and models under different levels were interpreted. Results: XGBoost reported the best performance with ACC of 0.922, 0.859 and 0.850, AUC of 0.974, 0.924 and 0.913 for the selected level A to C models in the test set, respectively. Tree-based feature importance and SHAP method successfully identified the commonly recognized risk factors, while indicated new inconsistent impact trends for GDM in different stages of pregnancy. Conclusion: A stepwise prediction system was successfully established. A practical tool that enables a quick prediction of GDM was released at https://github.com/ifyoungnet/MedGDM.This study is expected to provide a more detailed profiling of GDM risk and lay the foundation for the application of the model in practice.

3.
Cancer Commun (Lond) ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016053

ABSTRACT

BACKGROUND: The initial randomized, double-blinded, actively controlled, phase III ANEAS study (NCT03849768) demonstrated that aumolertinib showed superior efficacy relative to gefitinib as first-line therapy in epidermal growth factor receptor (EGFR)-mutated advanced non-small cell lung cancer (NSCLC). Metastatic disease in the central nervous system (CNS) remains a challenge in the management of NSCLC. This study aimed to compare the efficacy of aumolertinib versus gefitinib among patients with baseline CNS metastases in the ANEAS study. METHODS: Eligible patients were enrolled and randomly assigned in a 1:1 ratio to orally receive either aumolertinib or gefitinib in a double-blinded fashion. Patients with asymptomatic, stable CNS metastases were included. Follow-up imaging of the same modality as the initial CNS imaging was performed every 6 weeks for 15 months, then every 12 weeks. CNS response was assessed by a neuroradiological blinded, independent central review (neuroradiological-BICR). The primary endpoint for this subgroup analysis was CNS progression-free survival (PFS). RESULTS: Of the 429 patients enrolled and randomized in the ANEAS study, 106 patients were found to have CNS metastases (CNS Full Analysis Set, cFAS) at baseline by neuroradiological-BICR, and 60 of them had CNS target lesions (CNS Evaluable for Response, cEFR). Treatment with aumolertinib significantly prolonged median CNS PFS compared with gefitinib in both cFAS (29.0 vs. 8.3 months; hazard ratio [HR] = 0.31; 95% confidence interval [CI], 0.17-0.56; P < 0.001) and cEFR (29.0 vs. 8.3 months; HR = 0.26; 95% CI, 0.11-0.57; P < 0.001). The confirmed CNS overall response rate in cEFR was 85.7% and 75.0% in patients treated with aumolertinib and gefitinib, respectively. Competing risk analysis showed that the estimated probability of CNS progression without prior non-CNS progression or death was consistently lower with aumolertinib than with gefitinib in patients with and without CNS metastases at baseline. No new safety findings were observed. CONCLUSIONS: These results indicate a potential advantage of aumolertinib over gefitinib in terms of CNS PFS and the risk of CNS progression in patients with EGFR-mutated advanced NSCLC with baseline CNS metastases. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT03849768.

4.
Talanta ; 278: 126496, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996563

ABSTRACT

Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.

5.
Micromachines (Basel) ; 15(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38930687

ABSTRACT

A molecular pump is the core component of vacuum systems in portable mass spectrometers and other analytical instruments. The forms of the existing molecular pumps mainly are the combinations of vertical bleed and compression channel, which have the shortcomings of heavy mass and large volume, which seriously restricts the application and development of portable mass spectrometers. Aiming at the problems of low strength and insufficient pumping performance under the miniaturization constraints (mass of 1.8 kg; exhaust diameter of 25 mm) of molecular pumps, a compound pump consisting of a horizontal bleed channel and multi-stage spiral compression channel is proposed. The pumping principle of the compound molecular pump is analyzed to obtain its preliminary structural size parameters. The test particle Monte Carlo method is presented for establishing an aerodynamic model for a high-speed small compound molecular pump, which can be used to investigate the pumping performance of bleed blades and compression channels in a thin air environment. On the basis of the aerodynamic model, the NNIA multi-objective optimization algorithm is presented to optimize the structural parameters of the compound molecular pump. After structural parameter optimization, the maximum flow rate and compression ratio of the compound molecular pump are increased by 13.6% and 41.6%, respectively. The experimental results of the pumping performance show that the predicted data of the aerodynamic model are in good agreement with the experimental data, with an error of 12-27%. Namely, the established aerodynamic model has high accuracy and the optimized structural parameters of the compound molecular pump can provide basic conditions for the large-scale application and promotion of portable mass spectrometers.

6.
Micromachines (Basel) ; 15(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930765

ABSTRACT

This paper delves into enhancing the performance of ScAlN-based Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) through the implementation of Polydimethylsiloxane (PDMS) acoustic lenses. The PMUT, encapsulated in PDMS, underwent thorough characterization through the utilization of an industry-standard hydrophone calibration instrument. The experimental results showed that the ScAlN-based PMUT with the PDMS lenses achieved an impressive sensitivity of -160 dB (re: 1 V/µPa), an improvement of more than 8 dB compared to the PMUT with an equivalent PDMS film. There was a noticeable improvement in the -3 dB main lobe width within the frequency response when comparing the PMUT with PDMS encapsulation, both with and without lenses. The successful fabrication of high-performance PDMS lenses proved instrumental in significantly boosting the sensitivity of the PMUT. Comprehensive performance evaluations underscored that the designed PMUT in this investigation surpassed its counterparts reported in the literature and commercially available transducers. This encouraging outcome emphasizes its substantial potential for commercial applications.

7.
ACS Sens ; 9(6): 3017-3026, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38889364

ABSTRACT

Traumatic brain injury (TBI) is widely recognized as a global public health crisis, affecting millions of people each year, leading to permanent neurologic, emotional, and occupational disability, and highlighting the urgent need for rapid, sensitive, and early assessment. Here, we design a novel and simple lithography-free method for preparing dual-channel graphene-based field-effect transistors (G-FETs) and integrating them with microfluidic channels for simultaneously multiplexed detection of key blood TBI biomarkers: neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP). The G-FET utilizes an ingenious dual-channel electrode array design, where the source is shared between channels and the drains are independent of each other, which is the key to achieving simultaneous output of dual detection signals. At the same time, the microfluidic chip realizes microscale fluidic control and fast sample response time. This integrated detection system shows excellent sensitivity in biological fluids for the TBI biomarkers with detection limits as low as 55.63 fg/mL for NFL and 144.45 fg/mL for GFAP in phosphate-buffered saline (PBS) buffer, respectively. Finally, the clinical sample analysis shows promising performance for TBI detection, with an area under the curve (AUC) of 0.98 for the two biomarkers. And the combined dual-protein assay is also a good predictor of intracranial injury findings on computed tomography (CT) scans (AUC = 0.907). The integrated microfluidic G-FET device with a dual-signal output strategy has important potential for application in clinical practice, providing more comprehensive information for brain injury assessment.


Subject(s)
Biomarkers , Brain Injuries, Traumatic , Glial Fibrillary Acidic Protein , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/diagnosis , Biomarkers/blood , Humans , Glial Fibrillary Acidic Protein/blood , Lab-On-A-Chip Devices , Neurofilament Proteins/blood , Neurofilament Proteins/analysis , Transistors, Electronic , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Graphite/chemistry , Limit of Detection , Biosensing Techniques/methods , Biosensing Techniques/instrumentation
8.
Bioelectrochemistry ; 159: 108753, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38833812

ABSTRACT

MiR-1246 in breast cancer-derived exosomes was a promising biomarker for early diagnosis of breast cancer(BC). However, the low abundance, high homology and complex background interference make the accurate quantitative detection of miR-1246 facing great challenges. In this study, we developed an electrochemical biosensor based on the subtly combined of CRISPR/Cas12a, double-stranded specific nuclease(DSN) and magnetic nanoparticles(MNPs) for the detection of miR-1246 in BC-derived exosomes. Ascribed to the good synergistic effect of DSN, Cas12a and MNPs, the developed electrochemical biosensor exhibited excellent performance with the linear range from 500 aM to 5 pM, and the detection limit as low down to about 50 aM. The target-specific triggered enzyme-digest activity of DSN and Cas12a system, as well as the powerful separation ability of MNPs ensure the high specificity of developed electrochemical biosensor which can distinguish single base mismatches. In addition, the developed electrochemical biosensor has been successfully applied to detect miR-1246 in blood-derived exosomes and realize distinguishing the BC patients from the healthy individuals. It is expected that the well-designed biosensing platform will open up new avenues for clinical liquid biopsy and early screening of breast cancer, as well as provide deeper insights into clinical oncology treatment.


Subject(s)
Biosensing Techniques , Breast Neoplasms , CRISPR-Cas Systems , Electrochemical Techniques , Exosomes , MicroRNAs , Exosomes/chemistry , Exosomes/metabolism , Humans , Biosensing Techniques/methods , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , MicroRNAs/analysis , MicroRNAs/genetics , Female , Electrochemical Techniques/methods , Limit of Detection , Magnetite Nanoparticles/chemistry , Bacterial Proteins , Endodeoxyribonucleases , CRISPR-Associated Proteins
9.
Neurosurg Focus ; 56(6): E16, 2024 06.
Article in English | MEDLINE | ID: mdl-38823054

ABSTRACT

OBJECTIVE: Craniocervical dystonia (CCD) is a common type of segmental dystonia, which is a disabling disease that has been frequently misdiagnosed. Blepharospasm or cervical dystonia is the most usual symptom initially. Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) has been widely used for treating CCD, its clinical outcome has been primarily evaluated in small-scale studies. This research examines the sustained clinical effectiveness of DBS of the GPi in individuals diagnosed with CCD. METHODS: The authors report 24 patients (14 women, 10 men) with refractory CCD who underwent DBS of the GPi between 2016 and 2023. The severity and disability of the dystonia were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). The BFMDRS scores were collected preoperatively, 6 months postoperatively, and at the most recent follow-up visit. RESULTS: The mean age at onset was 52.0 ± 11.0 years (range 33-71 years) and the mean disease duration was 63.3 ± 73.3 months (range 7-360 months) (values for continuous variables are expressed as the mean ± SD). The mean follow-up period was 37.5 ± 23.5 months (range 6-84 months). The mean total BFMDRS motor scores at the 3 different time points were 13.3 ± 9.4 preoperatively, 5.0 ± 4.7 (55.3% improvement, p < 0.001) at 6 months, and 4.5 ± 3.6 (56.6% improvement, p < 0.001) at last follow-up. The outcomes were deemed poor in 6 individuals. CONCLUSIONS: Inferences drawn from the findings suggest that DBS of the GPi has long-lasting effectiveness and certain limitations in managing refractory CCD. The expected stability of the clinical outcome is not achieved. Patients with specific types of dystonia might consider targets other than GPi for a more precise therapy.


Subject(s)
Deep Brain Stimulation , Globus Pallidus , Humans , Deep Brain Stimulation/methods , Female , Male , Middle Aged , Adult , Aged , Follow-Up Studies , Treatment Outcome , Torticollis/therapy , Dystonic Disorders/therapy
10.
ACS Biomater Sci Eng ; 10(7): 4195-4226, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38752382

ABSTRACT

Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.


Subject(s)
Diabetic Foot , Wound Healing , Diabetic Foot/therapy , Diabetic Foot/drug therapy , Humans , Wound Healing/drug effects , Nanostructures/therapeutic use , Nanostructures/chemistry , Animals , Enzymes/metabolism
11.
Mol Med ; 30(1): 72, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822247

ABSTRACT

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Subject(s)
Bleomycin , DNA Glycosylases , Disease Models, Animal , Macrophages , Mitophagy , Protein Kinases , Pulmonary Fibrosis , Animals , Mitophagy/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Mice , Macrophages/metabolism , Protein Kinases/metabolism , Bleomycin/adverse effects , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , Macrophage Activation , Humans , Quinazolinones
12.
Clin Neurol Neurosurg ; 241: 108306, 2024 06.
Article in English | MEDLINE | ID: mdl-38713962

ABSTRACT

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a type of inherited metabolic disorder caused by mutation in the PANK2 gene. The metabolic disorder mainly affects the basal ganglia region and eventually manifests as dystonia. For patients of dystonia, their dystonic symptom may progress to life-threatening emergency--status dystonicus. OBJECTIVE: We described a case of a child with PKAN who had developed status dystonicus and was successfully treated with deep brain stimulation (DBS). Based on this rare condition, we analysed the clinical features of PKAN with status dystonicus and reviewed the reasonable management process of this condition. CONCLUSION: This case confirmed the rationality of choosing DBS for the treatment of status dystonicus. Meanwhile, we found that children with classic PKAN have a cluster of risk factors for developing status dystonicus. Once children diagnosed with similar neurodegenerative diseases are under status dystonicus, DBS can be active considered because it has showed high control rate of this emergent condition.


Subject(s)
Deep Brain Stimulation , Pantothenate Kinase-Associated Neurodegeneration , Humans , Pantothenate Kinase-Associated Neurodegeneration/genetics , Deep Brain Stimulation/methods , Male , Child , Dystonia/therapy , Female , Dystonic Disorders/therapy , Dystonic Disorders/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics
13.
BMC Plant Biol ; 24(1): 431, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773421

ABSTRACT

BACKGROUND: The flower colour of H. syriacus 'Qiansiban' transitions from fuchsia to pink-purple and finally to pale purple, thereby enhancing the ornamental value of the cultivars. However, the molecular mechanism underlying this change in flower colour in H. syriacus has not been elucidated. In this study, the transcriptomic data of H. syriacus 'Qiansiban' at five developmental stages were analysed to investigate the impact of flavonoid components on flower colour variation. Additionally, five cDNA libraries were constructed from H. syriacus 'Qiansiban' during critical blooming stages, and the transcriptomes were sequenced to investigate the molecular mechanisms underlying changes in flower colouration. RESULTS: High-performance liquid chromatography‒mass spectrometry detected five anthocyanins in H. syriacus 'Qiansiban', with malvaccin-3-O-glucoside being the predominant compound in the flowers of H. syriacus at different stages, followed by petunigenin-3-O-glucoside. The levels of these five anthocyanins exhibited gradual declines throughout the flowering process. In terms of the composition and profile of flavonoids and flavonols, a total of seven flavonoids were identified: quercetin-3-glucoside, luteolin-7-O-glucoside, Santianol-7-O-glucoside, kaempferol-O-hexosyl-C-hexarbonoside, apigenin-C-diglucoside, luteolin-3,7-diglucoside, and apigenin-7-O-rutinoside. A total of 2,702 DEGs were identified based on the selected reference genome. Based on the enrichment analysis of differentially expressed genes, we identified 9 structural genes (PAL, CHS, FLS, DRF, ANS, CHI, F3H, F3'5'H, and UFGT) and 7 transcription factors (3 MYB, 4 bHLH) associated with flavonoid biosynthesis. The qRT‒PCR results were in good agreement with the high-throughput sequencing data. CONCLUSION: This study will establish a fundamental basis for elucidating the mechanisms underlying alterations in the flower pigmentation of H. syriacus.


Subject(s)
Anthocyanins , Flavonoids , Flowers , Hibiscus , Metabolome , Transcriptome , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Hibiscus/genetics , Hibiscus/metabolism , Hibiscus/growth & development , Flavonoids/metabolism , Anthocyanins/metabolism , Pigmentation/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Color
14.
Case Rep Infect Dis ; 2024: 5361758, 2024.
Article in English | MEDLINE | ID: mdl-38784432

ABSTRACT

As a respiratory tract-transmitted disease, coronavirus disease 2019 (COVID-19) exerts a profound immune injury effect, leading not only to pulmonary impairment but also to cardiac complications. We present a case of a 79-year-old woman, who had previously contracted COVID-19 and subsequently developed sinus arrest (SA) following her second infection. The longest asystole time detected by Holter monitoring was 7.2 seconds. Although the patient met criteria for permanent pacemaker implantation, her family declined this intervention and conservative management was pursued instead. However, after a period of observation, the patient's SA resolved. The present case study describes a patient who experienced SA upon reinfection with COVID-19, which was not present during the initial infection. It emphasizes the impact of COVID-19 on cardiac health, particularly its potential to induce arrhythmias. In addition, it is worth noting that the arrhythmia induced by a COVID-19 infection may show reversibility, suggesting that a permanent pacemaker might not be the priority option if further pacing therapy is being considered.

15.
Heliyon ; 10(10): e30730, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784548

ABSTRACT

Neurogenesis, play a vital role in neuronal plasticity of adult mammalian brains, and its dysregulation is present in the pathophysiology of Parkinson's disease (PD). While subthalamic nucleus deep brain stimulation (STN-DBS) at various frequencies has been proven effective in alleviating PD symptoms, its influence on neurogenesis remains unclear. This study aimed to investigate the effects of 1-week electrical stimulation at frequencies of 60Hz, 130Hz, and 180Hz on neurogenesis in the subventricular zone (SVZ) of PD rats. A hemiparkinsonian rat model was established using 6-hydroxydopamine and categorized into six groups: control, PD, sham stimulation, 60Hz stimulation, 130Hz stimulation, and 180Hz stimulation. Motor function was assessed using the open field test and rotarod test after one week of STN-DBS at different frequencies. Tyrosine hydroxylase (TH) expression in brain tissue was analyzed via Western blot and immunohistochemistry. Immunofluorescence analysis was conducted to evaluate the expression of BrdU/Sox2, BrdU/GFAP, Ki67/GFAP, and BrdU/DCX in bilateral SVZ and the rostral migratory stream (RMS). Our findings revealed that high-frequency STN-DBS improved motor function. Specifically, stimulation at 130Hz increased dopaminergic neuron survival in the PD rat model, while significantly enhancing the proliferation of neural stem cells (NSCs) and neuroblasts in bilateral SVZ. Moreover, this stimulation effectively facilitated the generation of new NSCs in the ipsilateral RMS and triggered the emergence of fresh neuroblasts in bilateral RMS, with notable presence within the lesioned striatum. Conversely, electrical stimulation at 60Hz and 180Hz did not exhibit comparable effects. The observed promotion of neurogenesis in PD rats following STN-DBS provides valuable insights into the mechanistic basis of this therapeutic approach for PD.

16.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735951

ABSTRACT

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Porcine epidemic diarrhea virus , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Limit of Detection , Immunoassay/methods , Immunoassay/instrumentation , Antibodies, Monoclonal/immunology , Transistors, Electronic , Swine Diseases/diagnosis , Swine Diseases/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/analysis , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/immunology , Equipment Design
17.
Adv Sci (Weinh) ; : e2309992, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774946

ABSTRACT

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.

18.
Ecotoxicol Environ Saf ; 278: 116403, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710145

ABSTRACT

RATIONALE: Diesel engine exhaust (DEE) is associated with the development and exacerbation of asthma. Studies have shown that DEE can aggravate allergen-induced eosinophilic inflammation in lung. However, it remains not clear that whether DEE alone could initiate non-allergic eosinophilic inflammation and airway hyperresponsiveness (AHR) through innate lymphoid cells (ILCs) pathway. OBJECTIVE: This study aims to investigate the airway inflammation and hyperresponsiveness and its relationship with ILC after DEE exposure. METHOD: Non-sensitized BALB/c mice were exposed in the chamber of diesel exhaust or filtered air for 2, 4, and 6 weeks (4 h/day, 6 days/week). Anti-CD4 mAb or anti-Thy1.2 mAb was administered by intraperitoneal injection to inhibit CD4+T or ILCs respectively. AHR、airway inflammation and ILCs were assessed. RESULT: DEE exposure induced significantly elevated level of neutrophils, eosinophils, collagen content at 4, 6 weeks. Importantly, the airway AHR was only significant in the 4weeks-DEE exposure group. No difference of the functional proportions of Th2 cells was found between exposure group and control group. The proportions of IL-5+ILC2, IL-17+ILC significantly increased in 2, 4weeks-DEE exposure group. After depletion of CD4+T cells, both the proportion of IL-5+ILC2 and IL-17A ILCs was higher in the 4weeks-DEE exposure group which induced AHR, neutrophilic and eosinophilic inflammation accompanied by the IL-5, IL-17A levels. CONCLUSION: Diesel engine exhaust alone can imitate asthmatic characteristics in mice model. Lung-resident ILCs are one of the major effectors cells responsible for a mixed Th2/Th17 response and AHR.


Subject(s)
Air Pollutants , Lymphocytes , Mice, Inbred BALB C , Vehicle Emissions , Animals , Vehicle Emissions/toxicity , Mice , Lymphocytes/drug effects , Lymphocytes/immunology , Air Pollutants/toxicity , Inflammation/chemically induced , Eosinophils/immunology , Eosinophils/drug effects , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/chemically induced , Female , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Male
19.
Micromachines (Basel) ; 15(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675325

ABSTRACT

Real-time DOA (direction of arrival) estimation of surface or underwater targets is of great significance to the research of marine environment and national security protection. When conducting real-time DOA estimation of underwater targets, it can be difficult to extract the prior characteristics of noise due to the complexity and variability of the marine environment. Therefore, the accuracy of target orientation in the absence of a known noise is significantly reduced, thereby presenting an additional challenge for the DOA estimation of the marine targets in real-time. Aiming at the problem of real-time DOA estimation of acoustic targets in complex environments, this paper applies the MEMS vector hydrophone with a small size and high sensitivity to sense the conditions of the ocean environment and change the structural parameters in the adaptive adjustments system itself to obtain the desired target signal, proposes a signal processing method when the prior characteristics of noise are unknown. Theoretical analysis and experimental verification show that the method can achieve accurate real-time DOA estimation of the target, achieve an error within 3.1° under the SNR (signal-to-noise ratio) of the X channel of -17 dB, and maintain a stable value when the SNR continues to decrease. The results show that this method has a very broad application prospect in the field of ocean monitoring.

20.
Polymers (Basel) ; 16(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611170

ABSTRACT

In order to improve the preparation efficiency, quality stability, and large-area preparation of superhydrophobic thin films, a roll-to-roll continuous micro-nano imprinting method for the efficient preparation of superhydrophobic polymer films is proposed. A wear-resistant mold roller with hierarchical microstructure is prepared by wire electrical discharge machining (WEDM). The rheological filling model is constructed for revealing the forming mechanism of superhydrophobic polymer films during continuous micro/nano imprinting. The effects of imprinting temperature, rolling speed and the surface texture size of the template on the surface texture formation rate of polymer films are analyzed. The experimental results show that, compared with other process methods, the template processed by WEDM shows excellent wear resistance. Moreover, the optimal micro/nano imprinting parameters are the mold temperature of 190 °C (corresponding film temperature of 85 ± 5 °C), rolling speed of 3 rpm and roller gap of 0.1 mm. The maximum contact angle of the polymer film is 154°. In addition, the superhydrophobic polymer thin film has been proven to have good self-cleaning and anti-icing performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...