Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 18(1): 248, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35761325

ABSTRACT

BACKGROUND: High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. RESULTS: Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with "spinocerebellar ataxia", "sphingolipid signalling", "relaxin signalling", "protein export", "protein digestion and absorption" and "aldosterone synthesis and secretion" pathway. While the down-regulated DEPs in the aborted placentas mainly participated in "valine, leucine and isoleucine degradation", "PPAR signalling", "peroxisome", "oxidative phosphorylation", "galactose metabolism", "fatty acid degradation", "cysteine and methionine metabolism" and "citrate cycle" pathway. CONCLUSIONS: The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak.


Subject(s)
Cattle Diseases , Proteomics , Abortion, Veterinary , Animals , Cattle , Cattle Diseases/metabolism , Computational Biology/methods , Female , Oxidative Stress , Placenta/metabolism , Pregnancy , Proteomics/methods
2.
BMC Vet Res ; 18(1): 34, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35031034

ABSTRACT

BACKGROUND: Ovarian follicle fluid (FF) as a microenvironment surrounding oocyte plays critical roles in physio-biochemical processes of follicle development and oocyte maturation. It is hypothesized that proteins in yak FF participate in the physio-biochemical pathways. The primary aims of this study were to find differentially expressed proteins (DEPs) between mature and immature FF, and to elucidating functions of the mature and immature FF in yak. RESULTS: The mature and immature FF samples were obtained from three healthy yaks that were nonpregnant, aged from four to five years, and free from any anatomical reproductive disorders. The FF samples were subjected to mass spectrometry with the isobaric tags for relative and absolute quantification (iTRAQ). The FF samples went through correlation analysis, principle component analysis, and expression pattern analysis based on quantification of the identified proteins. Four hundred sixty-three DEPs between mature and immature FF were identified. The DEPs between the mature and immature FF samples underwent gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) analysis. The DEPs highly expressed in the mature FF mainly took parts in the complement and coagulation cascades, defense response, acute-phase response, response to other organism pathways to avoid invasion of exogenous microorganisms. The complement activation pathway contains eight DEPs, namely C2, C5, C6, C7, C9, C4BPA, CFH, and MBL2. The three DEPs, CATHL4, CHGA, and PGLYRP1, take parts in defense response pathway to prevent invasion of exogenetic microorganism. The coagulation cascades pathway involves many coagulation factors, such as F7, F13A1, FGA, FGB, FGG, KLKB1, KNG1, MASP1, SERPINA1, and SERPIND1. While the DEPs highly expressed in the immature FF participated in protein translation, peptide biosynthetic process, DNA conformation change, and DNA geometric change pathways to facilitate follicle development. The translation pathway contains many ribosomal proteins, such as RPL3, RPL5, RPS3, RPS6, and other translation factors, such as EIF3J, EIF4G2, ETF1, MOV10, and NARS. The DNA conformation change and DNA geometric change involve nine DEPs, DDX1, G3BP1, HMGB1, HMGB2, HMGB3, MCM3, MCM5, MCM6, and RUVBL2. Furthermore, the expressed levels of the main DEPs, C2 and SERPIND1, were confirmed by western blot. CONCLUSIONS: The differential proteomics revealed the up-regulated DEPs in mature FF take parts in immunoreaction to prevent invasion of microorganisms and the up-regulated DEPs in immature FF participate in protein synthesis, which may improve our knowledge of the follicular microenvironment and its biological roles for reproductive processes in yak. The DEPs, C2 and SERPIND1, can be considered as protein markers for mature yak follicle.


Subject(s)
Follicular Fluid/immunology , Protein Biosynthesis , Proteomics , Animals , Cattle , DNA , DNA Helicases , Female , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Serpins
3.
Front Microbiol ; 11: 485, 2020.
Article in English | MEDLINE | ID: mdl-32308649

ABSTRACT

Understanding the altered gastrointestinal microbiota is important to illuminate effects of maternal grazing (MG: maternally nursed and grazed) and barn feeding (BF: supplied milk replacer, starter feed, and alfalfa hay) on the performance and immune function of yak calves. Compared with the MG group, the significantly increased body weight, body height, body length, chest girth, and organ development of liver, spleen, and thymus were identified in the BF group, which were resulted from the significantly increased dry matter intake, increased concentrations of propionate, butyrate, isobutyrate, and valerate, increased ruminal pectinase, duodenal α-amylase, jejunal α-amylase and trypsin, and ileal trypsin, and promoted gastrointestinal epithelial development. Furthermore, genera of Sharpea, Sphingomonas, Atopobium, Syntrophococcus, Clostridium_XIVb, Acinetobacter, Oscillibacter, Dialister, Desulfovibrio, Bacteroides, Lachnospiracea_incertae_sedis, and Clostridium_sensu_stricto, which were involved in utilization of non-fibrous carbohydrate and further beneficial to improve the gastrointestinal digestion, development, and immune functions, were significantly increased in the BF group. Meanwhile, the significantly enhanced ruminal epithelial immune functions and intestinal immune functions based on enhanced ruminal immune related pathway, duodenal IL-1ß, jejunal IL-1ß, IL-2, TNF-α, and IFN-γ, and ileal IL-1ß were identified in the BF group, which also may induced by the increased abundance of gastrointestinal microbiota. Overall, barn feeding significantly increased the diversity of species and abundance of microbes which used different carbohydrates and further benefit to the growth and immune function of yak calves.

SELECTION OF CITATIONS
SEARCH DETAIL
...