Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1337578, 2024.
Article in English | MEDLINE | ID: mdl-38333622

ABSTRACT

The NAC gene family is one of the most important transcription factor families specific to plants, responsible for regulating many biological processes, including development, stress response, and signal transduction. However, it has not yet been characterized in chestnut, an important nut tree species. Here, we identified 115 CmNAC genes in the chestnut genome, which were divided into 16 subgroups based on the phylogenetic analysis. Numerous cis-acting elements related to auxin, gibberellin, and abscisic acid were identified in the promoter region of CmNACs, suggesting that they play an important role in the growth and development of chestnut. The results of the collinear analysis indicated that dispersed duplication and whole-genome-duplication were the main drivers of CmNAC gene expansion. RNA-seq data of developmental stages of chestnut nut, bud, and ovule revealed the expression patterns of CmNAC genes. Additionally, qRT-PCR experiments were used to verify the expression levels of some CmNAC genes. The comprehensive analysis of the above results revealed that some CmNAC members may be related to chestnut bud and nut development, as well as ovule fertility. The systematic analysis of this study will help to increase understanding of the potential functions of the CmNAC genes in chestnut growth and development.

2.
Front Genet ; 14: 1193953, 2023.
Article in English | MEDLINE | ID: mdl-37252667

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factors (TFs) gene family is an important gene family in plants, and participates in regulation of plant apical meristem growth, metabolic regulation and stress resistance. However, its characteristics and potential functions have not been studied in chestnut (Castanea mollissima), an important nut with high ecological and economic value. In the present study, 94 CmbHLHs were identified in chestnut genome, of which 88 were unevenly distributed on chromosomes, and other six were located on five unanchored scaffolds. Almost all CmbHLH proteins were predicted in the nucleus, and subcellular localization demonstrated the correctness of the above predictions. Based on the phylogenetic analysis, all of the CmbHLH genes were divided into 19 subgroups with distinct features. Abundant cis-acting regulatory elements related to endosperm expression, meristem expression, and responses to gibberellin (GA) and auxin were identified in the upstream sequences of CmbHLH genes. This indicates that these genes may have potential functions in the morphogenesis of chestnut. Comparative genome analysis showed that dispersed duplication was the main driving force for the expansion of the CmbHLH gene family inferred to have evolved through purifying selection. Transcriptome analysis and qRT-PCR experiments showed that the expression patterns of CmbHLHs were different in different chestnut tissues, and revealed some members may have potential functions in chestnut buds, nuts, fertile/abortive ovules development. The results from this study will be helpful to understand the characteristics and potential functions of the bHLH gene family in chestnut.

3.
Front Plant Sci ; 14: 1166717, 2023.
Article in English | MEDLINE | ID: mdl-37077628

ABSTRACT

The transcription factors of basic leucine zipper (bZIP) family genes play significant roles in stress response as well as growth and development in plants. However, little is known about the bZIP gene family in Chinese chestnut (Castanea mollissima Blume). To better understand the characteristics of bZIPs in chestnut and their function in starch accumulation, a series of analyses were performed including phylogenetic, synteny, co-expression and yeast one-hybrid analyses. Totally, we identified 59 bZIP genes that were unevenly distributed in the chestnut genome and named them CmbZIP01 to CmbZIP59. These CmbZIPs were clustered into 13 clades with clade-specific motifs and structures. A synteny analysis revealed that segmental duplication was the major driving force of expansion of the CmbZIP gene family. A total of 41 CmbZIP genes had syntenic relationships with four other species. The results from the co-expression analyses indicated that seven CmbZIPs in three key modules may be important in regulating starch accumulation in chestnut seeds. Yeast one-hybrid assays showed that transcription factors CmbZIP13 and CmbZIP35 might participate in starch accumulation in the chestnut seed by binding to the promoters of CmISA2 and CmSBE1_2, respectively. Our study provided basic information on CmbZIP genes, which can be utilized in future functional analysis and breeding studies.

4.
Plant Cell Rep ; 41(12): 2379-2391, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36208306

ABSTRACT

KEY MESSAGE: Within a QTL, the genetic recombination and interactions among five and two functional variations at MdbHLH25 and MdWDR5A caused much complicated phenotype segregation in apple FFR and FCR. The storability of climacteric fruit like apple is a quantitative trait. We previously identified 62 quantitative trait loci (QTLs) associating flesh firmness retainability (FFR) and flesh crispness retainability (FCR), but only a few functional genetic variations were identified and validated. The genetic variation network controlling fruit storability is far to be understood and diagnostic markers are needed for molecular breeding. We previously identified overlapped QTLs F16.1/H16.2 for FFR and FCR using an F1 population derived from 'Zisai Pearl' × 'Red Fuji'. In this study, five and two single-nucleotide polymorphisms (SNPs) were identified on the candidate genes MdbHLH25 and MdWDR5A within the QTL region. The SNP1 A allele at MdbHLH25 promoter reduced the expression and SNP2 T allele and/or SNP4/5 GT alleles at the exons attenuated the function of MdbHLH25 by downregulating the expression of the target genes MdACS1, which in turn led to a reduction in ethylene production and maintenance of higher flesh crispness. The SNPs did not alter the protein-protein interaction between MdbHLH25 and MdWDR5A. The joint effect of SNP genotype combinations by the SNPs on MdbHLH25 (SNP1, SNP2, and SNP4) and MdWDR5A (SNPi and SNPii) led to a much broad spectrum of phenotypic segregation in FFR and FCR. Together, the dissection of these genetic variations contributes to understanding the complicated effects of a QTL and provides good potential for marker development in molecular breeding.


Subject(s)
Malus , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Malus/genetics , Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...