Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2400216, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38676348

ABSTRACT

Transition metal dichalcogenides (TMDs) exhibit excellent electronic and photoelectric properties under pressure, prompting researchers to investigate their structural phase transitions, electrical transport, and photoelectric response upon compression. Herein, the structural and photoelectric properties of layered ZrS2 under pressure using in situ high-pressure photocurrent, Raman scattering spectroscopy, alternating current impedance spectroscopy, absorption spectroscopy, and theoretical calculations are studied. The experimental results show that the photocurrent of ZrS2 continuously increases with increasing pressure. At 24.6 GPa, the photocurrent of high-pressure phase P21/m is three orders of magnitude greater than that of the initial phase P 3 ¯ m 1 $P\bar{3}m1$ at ambient pressure. The minimum synthesis pressure for pure high-pressure phase P21/m of ZrS2 is 18.8 GPa, which exhibits a photocurrent that is two orders of magnitude higher than that of the initial phase P 3 ¯ m 1 $P\bar{3}m1$ and displays excellent stability. Additionally, it is discovered that the crystal structure, electrical transport properties and bandgap of layered ZrS2 can also be regulated by pressure. This work offers researchers a new direction for synthesizing high-performance TMDs photoelectric materials using high pressure, which is crucial for enhancing the performance of photoelectric devices in the future.

2.
Adv Sci (Weinh) ; 11(14): e2308016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308192

ABSTRACT

This work investigates the impact of pressure on the structural, optical properties, and electronic structure of CsPbBr3 quantum dots (QDs) using steady-state photoluminescence, steady-state absorption, and femtosecond transient absorption spectroscopy, reaching a maximum pressure of 3.38 GPa. The experimental results indicate that CsPbBr3 QDs undergo electronic state (ES) transitions from ES-I to ES-II and ES-II to ES-III at 0.38 and 1.08 GPa, respectively. Intriguingly, a mixed state of ES-II and ES-III is observed within the pressure range of 1.08-1.68 GPa. The pressure-induced fluorescence quenching in ES-II is attributed to enhanced defect trapping and reduced radiative recombination. Above 1.68 GPa, fluorescence vanishes entirely, attributed to the complete phase transformation from ES-II to ES-III in which radiative recombination becomes non-existent. Notably, owing to stronger quantum confinement effects, CsPbBr3 QDs exhibit an impressive bandgap tuning range of 0.497 eV from 0 to 2.08 GPa, outperforming nanocrystals by 1.4 times and bulk counterparts by 11.3 times. Furthermore, this work analyzes various carrier dynamics processes in the pressure-induced bandgap evolution and electron state transitions, and systematically studies the microphysical mechanisms of optical properties in CsPbBr3 QDs under pressure, offering insights for optimizing optical properties and designing novel materials.

3.
Phys Chem Chem Phys ; 25(10): 7366-7372, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36825775

ABSTRACT

The magnetic properties and electrical transport behaviors of half-metallic ferromagnet chromium dioxide (CrO2) powders under high pressure have been investigated by in situ electrical resistivity, magneto-resistivity, and Hall-effect measurements. Our results reveal that the Hall coefficient, carrier concentration, and mobility all present discontinuous changes from 11.7 GPa to 14.9 GPa which can be attributed to the second-order structural transition from the rutile-type to CaCl2-type. However, the resistivity decreases monotonically from ambient pressure to 16.5 GPa. This is due to, first, the decreased carrier concentration and the increased carrier mobility canceling the effects of each other on the resistivity; second, according to the calculation results, the bandgap of CrO2 decreased gradually with the pressure, and the bandgaps of the rutile-type phase and the CaCl2-type phase are extremely similar. CrO2 exhibits a linear and negative magnetoresistance under the applied magnetic field (0∼ ± 15 kOe). As the pressure increases, the magnetoresistance remains negative, but it becomes nonlinear and less symmetric, suggesting that pressure has an appreciable impact on the double-exchange mechanism leading to ferromagnetism in CrO2.

4.
Materials (Basel) ; 13(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942780

ABSTRACT

The compression of ammonium azide (AA) has been considered to be a promising route for producing high energy-density polynitrogen compounds. So far though, there is no experimental evidence that pure AA can be transformed into polynitrogen materials under high pressure at room temperature. We report here on high pressure (P) and temperature (T) experiments on AA embedded in N2 and on pure AA in the range 0-30 GPa, 300-700 K. The decomposition of AA into N2 and NH3 was observed in liquid N2 around 15 GPa-700 K. For pressures above 20 GPa, our results show that AA in N2 transforms into a new crystalline compound and solid ammonia when heated above 620 K. This compound is stable at room temperature and on decompression down to at least 7.0 GPa. Pure AA also transforms into a new compound at similar P-T conditions, but the product is different. The newly observed phases are studied by Raman spectroscopy and X-ray diffraction and compared to nitrogen and hydronitrogen compounds that have been predicted in the literature. While there is no exact match with any of them, similar vibrational features are found between the product that was obtained in AA + N2 with a polymeric compound of N9H formula.

5.
Sci Rep ; 7(1): 2656, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572598

ABSTRACT

The high-pressure metallization and electrical transport behaviors of GaSb were systematically investigated using in situ temperature-dependent electrical resistivity measurements, Hall effect measurements, transmission electron microscopy analysis, and first-principles calculations. The temperature-dependent resistivity measurements revealed pressure-induced metallization of GaSb at approximately 7.0 GPa, which corresponds to a structural phase transition from F-43m to Imma. In addition, the activation energies for the conductivity and Hall effect measurements indicated that GaSb undergoes a carrier-type inversion (p-type to n-type) at approximately 4.5 GPa before metallization. The first-principles calculations also revealed that GaSb undergoes a phase transition from F-43m to Imma at 7.0 GPa and explained the carrier-type inversion at approximately 4.5 GPa. Finally, transmission electron microscopy analysis revealed the effect of the interface on the electrical transport behavior of a small-resistance GaSb sample and explained the discontinuous change of resistivity after metallization. Under high pressure, GaSb undergoes grain refinement, the number of interfaces increases, and carrier transport becomes more difficult, increasing the electrical resistivity.

6.
Sci Rep ; 5: 14417, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26399167

ABSTRACT

The interface effect is one of the most important factors that strongly affect the structural transformations and the properties of nano-/submicro-crystals under pressure. However, characterization of the granular boundary changes in materials is always challenging. Here, using tetrakaidecahedral Zn2SnO4 microcrystals as an example, we employed alternating current impedance, X-ray diffraction methods and transmission electron microscopy to elucidate the effect of the interface on the structure and electrical transport behavior of the Zn2SnO4 material under pressure. We clearly show that grain refinement of the initial microcrystals into nanocrystals (approximately 5 nm) occurs at above 12.5 GPa and is characterized by an anomalous resistance variation without a structural phase transition. A new phase transition pathway from the cubic to hexagonal structure occurs at approximately 29.8 GPa in Zn2SnO4. The unexpected grain refinement may explain the new structural transition in Zn2SnO4, which is different from the previous theoretical prediction. Our results provide new insights into the link between the structural transition, interface changes and electrical transport properties of Zn2SnO4.

SELECTION OF CITATIONS
SEARCH DETAIL
...