Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 574
Filter
1.
Aging (Albany NY) ; 162024 May 31.
Article in English | MEDLINE | ID: mdl-38829778

ABSTRACT

Osteoarthritis (OA) is one of the most important causes of global disability, and dysfunction of chondrocytes is an important risk factor. The treatment of OA is still a challenge. Orexin-A is a hypothalamic peptide, and its effects in OA are unknown. In this study, we found that exposure to interleukin-1ß (IL-1ß) reduced the expression of orexin-2R, the receptor of orexin-A in TC-28a2 chondrocytes. Importantly, the senescence-associated ß-galactosidase (SA-ß-gal) staining assay demonstrated that orexin-A treatment ameliorates IL-1ß-induced cellular senescence. Importantly, the presence of IL-1ß significantly reduced the telomerase activity of TC-28a2 chondrocytes, which was rescued by orexin-A. We also found that orexin-A prevented IL-1ß-induced increase in the levels of Acetyl-p53 and the expression of p21. It is shown that orexin-A mitigates IL-1ß-induced reduction of sirtuin 3 (SIRT3). Silencing of SIRT3 abolished the protective effects of orexin-A against IL-1ß-induced cellular senescence. These results imply that orexin-A might serve as a promising therapeutic agent for OA.

2.
Planta ; 260(1): 22, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847958

ABSTRACT

MAIN CONCLUSION: The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Setaria Plant , Stress, Physiological , Setaria Plant/genetics , Setaria Plant/physiology , Setaria Plant/drug effects , Arabidopsis/genetics , Arabidopsis/physiology , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Plants, Genetically Modified , Multigene Family , Promoter Regions, Genetic/genetics , Reactive Oxygen Species/metabolism
3.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853850

ABSTRACT

Extracellular vesicles and particles (EVPs) are pivotal mediators of pre-metastatic niche formation and cancer progression, including induction of vascular permeability, which facilitates tumor cell extravasation and metastasis. However, the mechanisms through which EVPs exert this effect remain poorly understood. Here, we elucidate a novel mechanism by which tumor EVPs enhance endothelial cell permeability, tumor extravasation, and lung metastasis to different degrees, depending on tumor type. Strikingly, vascular leakiness is observed within 48h following tumor implantation and as early as one hour following intravenous injection of tumour-derived EVPs in naïve mice. Surprisingly, rather than acting directly on endothelial cells, EVPs first activate interstitial macrophages (IMs) leading to activation of JAK/STAT signaling and IL-6 secretion in IMs which subsequently promote endothelial permeability. Depletion of IMs significantly reduces tumour-derived EVP-dependent vascular leakiness and metastatic potential. Tumour EVPs that strongly induce vascular leakiness express high levels of ITGα5, and ITGα5 ablation impairs IM activation, cytokine secretion, and subsequently vascular permeability and metastasis. Importantly, IL-6 expression is elevated in IMs from non-involved tumor-adjacent lung tissue compared to distal lung tissue in lung cancer patients, highlight the clinical relevance of our discovery. Our findings identify a key role for IM activation as an initiating step in tumor type-specific EVP-driven vascular permeability and metastasis, offering promising targets for therapeutic intervention.

4.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864891

ABSTRACT

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Subject(s)
Phosphorus , Starch , Transcriptome , Zea mays , Zea mays/genetics , Zea mays/metabolism , Starch/metabolism , Phosphorus/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Quantitative Trait Loci , Phenotype
5.
BMC Genomics ; 25(1): 454, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720264

ABSTRACT

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Subject(s)
Anura , Hibernation , Metabolomics , Muscle, Skeletal , Animals , Hibernation/genetics , Hibernation/physiology , Muscle, Skeletal/metabolism , Anura/genetics , Anura/metabolism , Anura/physiology , Myocardium/metabolism , Transcriptome , Gene Expression Profiling , Seasons , Metabolome , Tibet
6.
Hortic Res ; 11(5): uhae087, 2024 May.
Article in English | MEDLINE | ID: mdl-38799123

ABSTRACT

Less-seed and seedless traits are desirable characteristics in watermelon (Citrullus lanatus). Hybridization between watermelon chromosomal translocated lines and wild lines significantly reduced seed counts in the hybrid fruits, approaching even seedless. However, the allelic relationships and the chromosomal translocation breakpoints from different sources are unclear, which limits their utility in breeding practices. This study focused on three groups of chromosomal translocation materials from different sources and conducted inheritance and allelic relationship analysis of translocation points. The results from third-generation genome sequencing and fluorescence in situ hybridization (FISH) revealed that the specific translocations in the naturally mutated material MT-a involved reciprocal translocations between Chr6 and Chr10. The Co60γ radiation-induced mutant material MT-b involved reciprocal translocations between Chr1 and Chr5, Chr4 and Chr8. The Co60γ radiation-induced mutant material MT-c involved complex translocations among Chr1, Chr5, and Chr11. Cytological observation showed that heterozygous translocation hybrids showed chromosomal synapsis abnormalities during meiotic diakinesis. Further, dominant and codominant molecular markers were developed on both sides of the translocation breakpoints, which could facilitate rapid and efficient identification of chromosome translocation lines. This study provides technical guidance for utilizing chromosomal translocation materials in the development of less-seed watermelon varieties.

7.
Animals (Basel) ; 14(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791715

ABSTRACT

The gut microbiota plays a crucial role in the host's metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic epithelial tissue and gut microbiota of the wild chipmunks during hibernation. This study analyzed the diversity, composition, and function of the gut microbiota of the wild chipmunk during hibernation using 16S rRNA gene high-throughput sequencing technology, and further conducted histological analysis of the colon. Histological analysis of the colon showed an increase in goblet cells in the hibernation group, which was an adaptive change to long-term fasting during hibernation. The dominant gut microbial phyla were Bacteroidetes, Firmicutes, and Proteobacteria, and the relative abundance of them changed significantly. The analysis of gut microbiota structural differences indicated that the relative abundance of Helicobacter typhlonius and Mucispirillum schaedleri increased significantly, while unclassified Prevotella-9, unclassified Prevotellaceae-UCG-001, unclassified Prevotellaceae-UCG-003 and other species of Prevotella decreased significantly at the species level. Alpha diversity analysis showed that hibernation increased the diversity and richness of the gut microbiota. Beta diversity analysis revealed significant differences in gut microbiota diversity between the hibernation group and the control group. PICRUSt2 functional prediction analysis of the gut microbiota showed that 15 pathways, such as lipid metabolism, xenobiotics biodegradation and metabolism, amino acid metabolism, environmental adaptation, and neurodegenerative diseases, were significantly enriched in the hibernation group, while 12 pathways, including carbohydrate metabolism, replication and repair, translation, and transcription, were significantly enriched in the control group. It can be seen that during hibernation, the gut microbiota of the wild chipmunk changes towards taxa that are beneficial for reducing carbohydrate consumption, increasing fat consumption, and adapting more strongly to environmental changes in order to better provide energy for the body and ensure normal life activities during hibernation.

8.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731398

ABSTRACT

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Subject(s)
Adenosine Triphosphate , Carbon , Citric Acid , Mitochondria , Polyethyleneimine , Protein Kinases , Polyethyleneimine/chemistry , Carbon/chemistry , Adenosine Triphosphate/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Quantum Dots/chemistry , Animals , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans , Cell Line , Reactive Oxygen Species/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
9.
Ann Neurol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661228

ABSTRACT

OBJECTIVE: Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS: Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS: The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION: Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024.

10.
Phytomedicine ; 129: 155631, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640858

ABSTRACT

BACKGROUND: The utilization of Chinese medicine as an adjunctive therapy for cancer has recently gained significant attention. Ferroptosis, a newly regulated cell death process depending on the ferrous ions, has been proved to be participated in glioma stem cells inactivation. PURPOSE: We aim to study whether ginsenoside Rg5 exerted inhibitory effects on crucial aspects of glioma stem cells, including cell viability, tumor initiation, invasion, self-renewal ability, neurosphere formation, and stemness. METHODS: Through comprehensive sequencing analysis, we identified a compelling association between ginsenoside Rg5 and the ferroptosis pathway, which was further validated through subsequent experiments demonstrating its ability to activate this pathway. RESULTS: To elucidate the precise molecular targets affected by ginsenoside Rg5 in gliomas, we conducted an intersection analysis between differentially expressed genes obtained from sequencing and a database-predicted list of transcription factors and potential targets of ginsenoside Rg5. This rigorous approach led us to unequivocally confirm NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) as a direct target of ginsenoside Rg5, a finding consistently supported by subsequent experimental investigations. Moreover, we uncovered NR3C1's capacity to transcriptionally regulate ferroptosis -related genes HSPB1 and NCOA4. Strikingly, ginsenoside Rg5 induced notable alterations in the expression levels of both HSPB1 (Heat Shock Protein Family B Member 1) and NCOA4 (Nuclear Receptor Coactivator 4). Finally, our intracranial xenograft assays served to reaffirm the inhibitory effect of ginsenoside Rg5 on the malignant progression of glioblastoma. CONCLUSION: These collective findings strongly suggest that ginsenoside Rg5 hampers glioblastoma progression by activating ferroptosis through NR3C1, which subsequently modulates HSPB1 and NCOA4. Importantly, this novel therapeutic direction holds promise for advancing the treatment of glioblastoma.


Subject(s)
Ferroptosis , Ginsenosides , Glioblastoma , Ginsenosides/pharmacology , Ferroptosis/drug effects , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Animals , Cell Line, Tumor , Nuclear Receptor Coactivators/metabolism , Mice , Mice, Nude , Molecular Chaperones/metabolism , Heat-Shock Proteins/metabolism , Cell Survival/drug effects , Neoplastic Stem Cells/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Brain Neoplasms/drug therapy
11.
Sensors (Basel) ; 24(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38610445

ABSTRACT

Cardiovascular diseases pose a long-term risk to human health. This study focuses on the rich-spectrum mechanical vibrations generated during cardiac activity. By combining Fourier series theory, we propose a multi-frequency vibration model for the heart, decomposing cardiac vibration into frequency bands and establishing a systematic interpretation for detecting multi-frequency cardiac vibrations. Based on this, we develop a small multi-frequency vibration sensor module based on flexible polyvinylidene fluoride (PVDF) films, which is capable of synchronously collecting ultra-low-frequency seismocardiography (ULF-SCG), seismocardiography (SCG), and phonocardiography (PCG) signals with high sensitivity. Comparative experiments validate the sensor's performance and we further develop an algorithm framework for feature extraction based on 1D-CNN models, achieving continuous recognition of multiple vibration features. Testing shows that the recognition coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) of the 8 features are 0.95, 2.18 ms, and 4.89 ms, respectively, with an average prediction speed of 60.18 us/point, meeting the re-quirements for online monitoring while ensuring accuracy in extracting multiple feature points. Finally, integrating the vibration model, sensor, and feature extraction algorithm, we propose a dynamic monitoring system for multi-frequency cardiac vibration, which can be applied to portable monitoring devices for daily dynamic cardiac monitoring, providing a new approach for the early diagnosis and prevention of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Vibration , Humans , Heart , Algorithms , Phonocardiography
13.
Neuroreport ; 35(7): 457-465, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38526920

ABSTRACT

Modern medicine has unveiled that essential oil made from Aquilaria possesses sedative and hypnotic effects. Among the chemical components in Aquilaria, nerolidol, a natural sesquiterpene alcohol, has shown promising effects. This study aimed to unravel the potential of nerolidol in treating depression. Chronic unpredictable mild stress (CUMS) was utilized to induce depression-like behavior in mice, and open field test, sucrose preference, and tail suspension test was conducted. The impacts of nerolidol on the inflammatory response, microglial activation, and DNA methyltransferase 1 (DNMT1) were assessed. To study the regulatory role of DNMT1, lipopolysaccharide (LPS) was used to treat BV2 cells, followed by the evaluation of cell viability and DNMT1 level. Additionally, the influence of DNMT1 overexpression on BV2 cell activation was determined. Behavioral analysis revealed that nerolidol reduced depression-like behavior in mice. Nerolidol reduced the levels of inflammatory factors and microglial activation caused by CUMS. Nerolidol treatment was found to reduce DNMT1 levels in mouse brain tissue and it also decrease the LPS-induced increase in DNMT1 levels in BV2 cells. DNMT1 overexpression reversed the impacts of nerolidol on the inflammation response and cell activation. This study underscores the potential of nerolidol in reducing CUMS-induced depressive-like behavior and inhibiting microglial activation by downregulating DNMT1. These findings offer valuable insights into the potential of nerolidol as a therapeutic option for depression.


Subject(s)
Depression , Sesquiterpenes , Animals , Mice , Behavior, Animal , Depression/drug therapy , Depression/etiology , Disease Models, Animal , Hippocampus , Lipopolysaccharides , Methyltransferases/metabolism , Microglia , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Stress, Psychological/complications
14.
J Ethnopharmacol ; 328: 118135, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38556139

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Clinacanthus nutans (Burm. f.) Lindau, a traditional herb renowned for its anti-tumor, antioxidant, and anti-inflammatory properties, has garnered considerable attention. Although its hepatoprotective effects have been described, there is still limited knowledge of its treatment of acute liver injury (ALI), and its mechanisms remain unclear. AIM OF THE STUDY: To assess the efficacy of Clinacanthus nutans in ALI and to identify the most effective fractions and their underlying mechanism of action. METHODS: Bioinformatics was employed to explore the underlying anti-hepatic injury mechanisms and active compounds of Clinacanthus nutans. The binding ability of schaftoside, a potential active ingredient in Clinacanthus nutans, to the core target nuclear factor E2-related factor 2 (Nrf2) was further determined by molecular docking. The role of schaftoside in improving histological abnormalities in the liver was observed by H&E and Masson's staining in an ALI model induced by CCl4. Serum and liver biochemical parameters were measured using AST, ALT and hydroxyproline kits. An Fe2+ kit, transmission electron microscopy, western blotting, RT-qPCR, and DCFH-DA were used to measure whether schaftoside reduces ferroptosis-induced ALI. Subsequently, specific siRNA knockdown of Nrf2 in AML12 cells was performed to further elucidate the mechanism by which schaftoside attenuates ferroptosis-induced ALI. RESULTS: Bioinformatics analysis and molecular docking showed that schaftoside is the principal compound from Clinacanthus nutans. Schaftoside was shown to diminish oxidative stress levels, attenuate liver fibrosis, and forestall ferroptosis. Deeper investigations revealed that schaftoside amplified Nrf2 expression and triggered the Nrf2/GPX4 pathway, thereby reversing mitochondrial aberrations triggered by lipid peroxidation, GPX4 depletion, and ferroptosis. CONCLUSION: The lead compound schaftoside counters ferroptosis through the Nrf2/GPX4 axis, providing insights into a novel molecular mechanism for treating ALI, thereby presenting an innovative therapeutic strategy for ferroptosis-induced ALI.


Subject(s)
Acanthaceae , Ferroptosis , Glycosides , NF-E2-Related Factor 2 , Molecular Docking Simulation , Liver
15.
Chin Med ; 19(1): 27, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365794

ABSTRACT

BACKGROUND: Diabetic kidney disease (DKD) is a prevalent complication of diabetes and the leading cause of end-stage renal disease. Recent evidence suggests that total flavonoids of Astragalus (TFA) has promising effects on diabetes; however, its influence on DKD and the underlying mechanism remains unclear. METHODS: In this study, we induced the DKD model using streptozotocin (STZ) in male C57BL/6J mice and utilized glomerular endothelial cell (GEC) lines for in vitro investigations. We constructed a network pharmacology analysis to understand the mechanism of TFA in DKD. The mechanism of TFA action on DKD was investigated through Western blot analysis and multi-immunological methods. RESULTS: Our findings revealed that TFA significantly reduced levels of urinary albumin (ALB). Network pharmacology and intracellular pathway experiments indicated the crucial involvement of the PI3K/AKT signaling pathway in mediating these effects. In vitro experiments showed that TFA can preserve the integrity of the glomerular filtration barrier by inhibiting the expression of inflammatory factors TNF-alpha and IL-8, reducing oxidative stress. CONCLUSION: Our findings demonstrated that TFA can ameliorates the progression of DKD by ameliorating renal fibrosis and preserving the integrity of the kidney filtration barrier. These results provide pharmacological evidence supporting the use of TFA in the treatment of kidney diseases.

16.
Int J Obes (Lond) ; 48(6): 849-858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38341506

ABSTRACT

OBJECTIVE: Fatty acids play a critical role in the proper functioning of the brain. This study investigated the effects of a high-fat (HF) diet on brain fatty acid profiles of offspring exposed to maternal gestational diabetes mellitus (GDM). METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish the GDM animal model. Brain fatty acid profiles of the offspring mice were measured by gas chromatography at weaning and adulthood. Protein expressions of the fatty acid transport pathway Wnt3/ß-catenin and the target protein major facilitator superfamily domain-containing 2a (MFSD2a) were measured in the offspring brain by Western blot. RESULTS: Maternal GDM increased the body weight of male offspring (P < 0.05). In weaning offspring, factorial analysis showed that maternal GDM increased the monounsaturated fatty acid (MUFA) percentage of the weaning offspring's brain (P < 0.05). Maternal GDM decreased offspring brain arachidonic acid (AA), but HF diet increased brain linoleic acid (LA) (P < 0.05). Maternal GDM and HF diet reduced offspring brain docosahexaenoic acid (DHA), and the male offspring had higher DHA than the female offspring (P < 0.05). In adult offspring, factorial analysis showed that HF diet increased brain MUFA in offspring, and male offspring had higher brain MUFA than female offspring (P < 0.05). The HF diet increased brain LA in the offspring. Male offspring had higher level of AA than female offspring (P < 0.05). HF diet reduced DHA in the brains of female offspring. The brain protein expression of ß-catenin and MFSD2a in both weaning and adult female offspring was lower in the HF + GDM group than in the CON group (P < 0.05). CONCLUSIONS: Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.


Subject(s)
Brain , Diabetes, Gestational , Diet, High-Fat , Fatty Acids , Prenatal Exposure Delayed Effects , Animals , Pregnancy , Female , Diabetes, Gestational/metabolism , Mice , Diet, High-Fat/adverse effects , Brain/metabolism , Prenatal Exposure Delayed Effects/metabolism , Male , Fatty Acids/metabolism , Disease Models, Animal , Maternal Nutritional Physiological Phenomena
17.
World J Clin Cases ; 12(4): 737-745, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38322685

ABSTRACT

BACKGROUND: As one of the fatal diseases with high incidence, lung cancer has seriously endangered public health and safety. Elderly patients usually have poor self-care and are more likely to show a series of psychological problems. AIM: To investigate the effectiveness of the initial check, information exchange, final accuracy check, reaction (IIFAR) information care model on the mental health status of elderly patients with lung cancer. METHODS: This study is a single-centre study. We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022. These elderly patients with lung cancer were randomly divided into two groups, with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol. The differences in psychological distress, anxiety and depression, life quality, fatigue, and the locus of control in psychology were compared between these two groups, and the causes of psychological distress were analyzed. RESULTS: After the intervention, Distress Thermometer, Hospital Anxiety and Depression Scale (HADS) for anxiety and the HADS for depression, Revised Piper's Fatigue Scale, and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group (P < 0.05). After the intervention, Quality of Life Questionnaire Core 30 (QLQ-C30), Internal Health Locus of Control, and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group, and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group (P < 0.05). CONCLUSION: The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression, psychological distress, and fatigue, improving their tendencies on the locus of control in psychology, and enhancing their life qualities.

18.
Phytomedicine ; 126: 155445, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412666

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the primary cause of end-stage renal disease (ESRD), and the therapeutic strategies for DN are limited. Notoginsenoside Fc (Fc), a novel saponin isolated from Panax Notoginseng (PNG), has been reported to alleviate vascular injury in diabetic rats. However, the protective effects of Fc on DN remain unclear. PURPOSE: To investigate the beneficial effects and mechanisms of Fc on DN. METHODS: Db/db mice were treated with 2.5, 5 and 10 mg·kg-1·d-1 of Fc for 8 weeks. High glucose (HG) induced mouse glomerular endothelial cells (GECs) were treated with 2.5, 5 and 10 µM of Fc for 24 h. RESULTS: Our data found that Fc ameliorated urinary microalbumin level, kidney dysfunction and histopathological damage in diabetic mice. Moreover, Fc alleviated the accumulation of oxidative stress, the collapse of mitochondrial membrane potential and the expression of mitochondrial fission proteins, such as Drp-1 and Fis1, while increased the expression of mitochondrial fusion protein Mfn2. Fc also decreased pyroptosis-related proteins levels, such as TXNIP, NLRP3, cleaved caspase-1, and GSDMD-NT, indicating that Fc ameliorated GECs pyroptosis. In addition, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) expression was increased in diabetic group, which was partially abrogated by Fc. Our data further proved that knockdown of HMGCS2 could restrain HG-induced GECs mitochondrial dysfunction and pyroptosis. These results indicated that the inhibitory effects of Fc on mitochondrial damage and pyroptosis were associated with the suppression of HMGCS2. CONCLUSION: Taken together, this study clearly demonstrated that Fc ameliorated GECs pyroptosis and mitochondrial dysfunction partly through regulating HMGCS2 pathway, which might provide a novel drug candidate for DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ginsenosides , Mitochondrial Diseases , Rats , Mice , Animals , Diabetic Nephropathies/metabolism , Endothelial Cells , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Pyroptosis , Mitochondrial Diseases/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Cell Cycle Proteins/metabolism
19.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374108

ABSTRACT

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Subject(s)
Cannabidiol , Cocaine , Receptors, Cannabinoid , Substance-Related Disorders , Animals , Mice , Rats , Cannabidiol/analogs & derivatives , Cocaine/pharmacology , Dopaminergic Neurons/metabolism , Glutamic Acid/metabolism , Mice, Knockout , Nicotine/pharmacology , Pharmaceutical Preparations/metabolism , Receptors, Cannabinoid/metabolism , Receptors, G-Protein-Coupled/genetics , Substance-Related Disorders/genetics , Substance-Related Disorders/metabolism
20.
Food Funct ; 15(5): 2706-2718, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38376466

ABSTRACT

Dietary intake can modify the impact of metals on human health, and is also closely related to glucose metabolism in human bodies. However, research on their interaction is limited. We used data based on 1738 adults aged ≥20 years from the National Health and Nutrition Examination Survey 2011-2016. We combined linear regression and restricted cubic splines with Bayesian kernel machine regression (BKMR) to identify metals associated with each glucose metabolism index (P < 0.05 and the posterior inclusion probabilities of BKMR >0.5) in eight non-essential heavy metals (barium, cadmium, antimony, tungsten, uranium, arsenic, lead, and thallium) and glucose metabolism indexes [fasting plasma glucose (FPG), blood hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)]. We identified two pairs of metals associated with glucose metabolism indexes: cadmium and tungsten to HbA1c and barium and thallium to HOMA-IR. Then, the cross-validated kernel ensemble (CVEK) approach was applied to identify the specific nutrient group (nutrients) that interacted with the association. By using the CVEK model, we identified significant interactions between the energy-adjusted diet inflammatory index (E-DII) and cadmium, tungsten and barium (all P < 0.05); macro-nutrients and cadmium, tungsten and barium (all P < 0.05); minerals and cadmium, tungsten, barium and thallium (all P < 0.05); and A vitamins and thallium (P = 0.043). Furthermore, a lower E-DII, a lower intake of carbohydrates and phosphorus, and a higher consumption of magnesium seem to attenuate the positive association between metals and glucose metabolism indexes. Our finding identifying the nutrients that interact with non-essential heavy metals could provide a feasible nutritional guideline for the general population to protect against the adverse effects of non-essential heavy metals on glucose metabolism.


Subject(s)
Cadmium , Metals, Heavy , Adult , Humans , Nutrition Surveys , Barium , Thallium , Tungsten , Glycated Hemoglobin , Bayes Theorem , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...