Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(50)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36279871

ABSTRACT

The dipolar responses of a single hexagonal Au nanoplate are investigated under the illuminations of linearly polarized beam and tightly focused radially polarized beam (RPB). It is found from the scattering spectra that the in-plane and out-of-plane electric dipole modes can be selectively triggered with a linearly polarized beam and tightly focused RPB, respectively. The features of these two dipolar modes are further confirmed in terms of electrical field and charge maps by the finite-difference time-domain simulation. Additionally, using the multipole expansion method, the existence of the out-of-plane dipole mode is further verified by the fact that thez-component of electric dipole response has a dominant contribution to the scattered power. Moreover, by combining the back focal plane imaging technique with the simulation, the appearance of in-plane and out-of-plane dipoles in the scattering pattern are clearly discerned. Our results provide an efficient method for selectively exciting the in-plane and out-of-plane dipolar modes of the nanoplate. We envision that the ease of tuning the dipolar momentum may facilitate the enhancement of the interaction between the plasmon and emitters at single-particle level.

2.
Opt Express ; 29(16): 25109-25117, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614849

ABSTRACT

We demonstrate a nanometric displacement sensor with a switchable measuring range by using a single silicon nanoantenna. It is revealed that the interference between the longitudinal and transverse dipolar scattering can be well tuned by moving the nanoantenna in the focal field of the cylindrical vector beam. As a result, a position related scattering directivity is found and is used as a displacement sensor with a 4.5 nm lateral resolution. Interestingly, the measuring range of this displacement sensor can be extended by twice through simply changing the excitation from the azimuthally polarized beam to the radially polarized beam. Our results provide a facile way to tune the measuring range of the nanometric displacement sensor and may open up an avenue to super-resolution microscopy and optical nanometrology.

SELECTION OF CITATIONS
SEARCH DETAIL
...