Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
DNA Repair (Amst) ; 140: 103690, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38823186

ABSTRACT

DNA strand breaks activate Poly(ADP-ribose) polymerase (PARP) 1 and 2, which use NAD+ as the substrate to covalently conjugate ADP-ribose on themselves and other proteins (e.g., Histone) to promote chromatin relaxation and recruit additional DNA repair factors. Enzymatic inhibitors of PARP1 and PARP2 (PARPi) are promising cancer therapy agents that selectively target BRCA1- or BRCA2- deficient cancers. As immediate early responders to DNA strand breaks with robust activities, PARP1 and PARP2 normally form transient foci (<10 minutes) at the micro-irradiation-induced DNA lesions. In addition to enzymatic inhibition, PARPi also extend the presence of PARP1 and PARP2 at DNA lesions, including at replication forks, where they may post a physical block for subsequent repair and DNA replication. The dynamic nature of PARP1 and PARP2 foci made live cell imaging a unique platform to detect subtle changes and the functional interaction among PARP1, PARP2, and their regulators. Recent imaging studies have provided new understandings of the biological consequence of PARP inhibition and uncovered functional interactions between PARP1 and PARP2 and new regulators (e.g., histone poly(ADP-ribosylation) factor). Here, we review recent advances in dissecting the temporal and spatial Regulation of PARP1 and PARP2 at DNA lesions and discuss their physiological implications on both cancer and normal cells.

2.
Res Sq ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826437

ABSTRACT

Despite genome-wide association studies of late-onset Alzheimer's disease (LOAD) having identified many genetic risk loci 1-6, the underlying disease mechanisms remain largely unknown. Determining causal disease variants and their LOAD-relevant cellular phenotypes has been a challenge. Leveraging our approach for identifying functional GWAS risk variants showing allele-specific open chromatin (ASoC) 7, we systematically identified putative causal LOAD risk variants in human induced pluripotent stem cells (iPSC)-derived neurons, astrocytes, and microglia (MG) and linked PICALM risk allele to a previously unappreciated MG-specific role of PICALM in lipid droplet (LD) accumulation. ASoC mapping uncovered functional risk variants for 26 LOAD risk loci, mostly MG-specific. At the MG-specific PICALM locus, the LOAD risk allele of rs10792832 reduced transcription factor (PU.1) binding and PICALM expression, impairing the uptake of amyloid beta (Aß) and myelin debris. Interestingly, MG with PICALM risk allele showed transcriptional enrichment of pathways for cholesterol synthesis and LD formation. Genetic and pharmacological perturbations of MG further established a causal link between the reduced PICALM expression, LD accumulation, and phagocytosis deficits. Our work elucidates the selective LOAD vulnerability in microglia for the PICALM locus through detrimental LD accumulation, providing a neurobiological basis that can be exploited for developing novel clinical interventions.

3.
Abdom Radiol (NY) ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824474

ABSTRACT

OBJECTIVE: To compare the ability to depict MRI features of hepatobiliary agents in microvascular infiltration (MVI) of hepatocellular carcinoma (HCC) during different stages of dynamic enhancement MRI. MATERIALS AND METHODS: A retrospective study included 111 HCC lesions scanned with either Gd-EOB-DTPA or Gd-BOPTA. All cases underwent multiphase dynamic contrast-enhanced scanning before surgery, including arterial phase (AP), portal venous phase (PVP), transitional phase (TP), delayed phase (DP), and hepatobiliary phase (HBP). Two abdominal radiologists independently evaluated MRI features of MVI in HCC, such as peritumoral hyperenhancement, incomplete capsule, non-smooth tumor margins, and peritumoral hypointensity. Finally, the results were reviewed by the third senior abdominal radiologist. Chi-square (χ2) Inspection for comparison between groups. P < 0.05 is considered statistically significant. Receiver operating characteristic (ROC) curve was used to evaluate correlation with pathology, and the area under the curve (AUC) and 95% confidence interval (95% CI) were calculated. RESULTS: Among the four MVI evaluation signs, Gd-BOPTA showed significant differences in displaying two signs in the HBP (P < 0.05:0.000, 0.000), while Gd-EOB-DTPA exhibited significant differences in displaying all four signs (P < 0.05:0.005, 0.006, 0.000, 0.002). The results of the evaluations of the two contrast agents in the DP phase with incomplete capsulation showed the highest correlation with pathology (AUC: 0.843, 0.761). By combining the four MRI features, Gd-BOPTA and Gd-EOB-DTPA have correlated significantly with pathology, and Gd-BOPTA is better (AUC: 0.9312vs0.8712). CONCLUSION: The four features of hepatobiliary agent dynamic enhancement MRI demonstrate a good correlation with histopathological findings in the evaluation of MVI in HCC, and have certain clinical significance.

4.
J Child Orthop ; 18(3): 331-339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831851

ABSTRACT

Background: Congenital scoliosis is often associated with costal deformities, of which a bilateral bifid intrathoracic rib is very rare. The aim of this study was to retrospectively summarize the clinical manifestations, imaging characteristics, treatment strategies, and postoperative outcomes of five patients with bilateral bifid intrathoracic rib. Methods: We retrospectively reviewed the imaging findings and medical records of five pediatric patients (two girls, three boys) with bilateral bifid intrathoracic rib who were surgically treated for congenital kyphoscoliosis (mean age = 8 years). The clinical manifestations, imaging characteristics, treatment strategies, and postoperative outcome were summarized. Results: Four of five patients showed abnormalities from birth. All five patients presented with kyphoscoliosis and a fused vertebral body or lamina. The bilateral bifid intrathoracic rib was located at T2-3 in three patients, T7 in one patient, and T10 in one patient. Various congenital spinal deformities and multiple system malformations were present in all five patients. Three patients had preoperative neurological deficits. For corrective surgery, one patient received a traditional growing rod implantation, one patient underwent resection of a bony septum, and three patients underwent spinal osteotomy. One patient suffered complete paralysis of the lower limbs after surgery. Conclusion: Bilateral bifid intrathoracic rib is a rare anomaly that typically occurs in patients with serious kyphoscoliosis. Bilateral bifid intrathoracic rib patients show similar clinical and radiological characteristics and are likely to exhibit neurological deficits before or following corrective surgery. Spinal surgeons should be aware of the high risk of permanent neurological complications related to surgery in these patients. Level of evidence: level IV.

5.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727288

ABSTRACT

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Glioblastoma , Integrin alpha3 , Integrin beta1 , TNF-Related Apoptosis-Inducing Ligand , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Apoptosis/genetics , Cell Line, Tumor , Integrin beta1/metabolism , Integrin beta1/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Integrin alpha3/metabolism , Integrin alpha3/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
6.
NPJ Parkinsons Dis ; 10(1): 97, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702337

ABSTRACT

Observational studies in Parkinson's disease (PD) deeply characterize relatively small numbers of participants. The Molecular Integration in Neurological Diagnosis Initiative seeks to characterize molecular and clinical features of every PD patient at the University of Pennsylvania (UPenn). The objectives of this study are to determine the feasibility of genetic characterization in PD and assess clinical features by sex and GBA1/LRRK2 status on a clinic-wide scale. All PD patients with clinical visits at the UPenn PD Center between 9/2018 and 12/2022 were eligible. Blood or saliva were collected, and a clinical questionnaire administered. Genotyping at 14 GBA1 and 8 LRRK2 variants was performed. PD symptoms were compared by sex and gene groups. 2063 patients were approached and 1,689 (82%) were enrolled, with 374 (18%) declining to participate. 608 (36%) females were enrolled, 159 (9%) carried a GBA1 variant, and 44 (3%) carried a LRRK2 variant. Compared with males, females across gene groups more frequently reported dystonia (53% vs 46%, p = 0.01) and anxiety (64% vs 55%, p < 0.01), but less frequently reported cognitive impairment (10% vs 49%, p < 0.01) and vivid dreaming (53% vs 60%, p = 0.01). GBA1 variant carriers more frequently reported anxiety (67% vs 57%, p = 0.04) and depression (62% vs 46%, p < 0.01) than non-carriers; LRRK2 variant carriers did not differ from non-carriers. We report feasibility for near-clinic-wide enrollment and characterization of individuals with PD during clinical visits at a high-volume academic center. Clinical symptoms differ by sex and GBA1, but not LRRK2, status.

7.
Angew Chem Int Ed Engl ; : e202408189, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774981

ABSTRACT

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as promising candidates in gas sensing, owing to their tunable porous structure and conductivity. Nevertheless, the reported gas sensing mechanisms heavily relied on electron transfer between metal nodes and gas molecules. Normally, the strong interaction between the metal sites and target gas molecule would result poor recovery and thus bad recycling property. Herein, we propose a redox synergy strategy to overcome this issue by balancing the reactivity of metal sites and ligands. A 2D c-MOF, Zn3(HHTQ)2, was prepared for nitrogen dioxide (NO2) sensing, which was constructed from active ligands (hexahydroxyl-tricycloquinazoline, HHTQ) and inactive transition-metal ions (Zn2+). Substantial characterizations and theoretical calculations demonstrated that by utilizing only the redox interactions between ligands and NO2, not only high sensitivity and selectivity, but also excellent cycling stability in NO2 sensing could be achieved. In contrast, control experiments employing isostructural 2D c-MOFs with Cu/Ni metal nodes exhibited irreversible NO2 sensing. Our current work provides a new design strategy for gas sensing materials, emphasizing harnessing the redox activity of only ligands to enhance the stability of MOF sensing materials.

8.
J Biomed Res ; : 1-13, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38807379

ABSTRACT

Macrophages mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia. Thus, it's necessary to exploit macrophages based therapeutic targets for ischemic disease. Here, we found mRNA level of SR-A1 was elevated in patients with critical limb ischemia by analysis of gene expression omnibus (GEO) database. Then we investigated the role and the underlined mechanisms of macrophage SR-A1 in a mouse HLI model. Compared with the SR-A1 fl/fl mice, the Lyz Cre/+/SR-A1 flox/flox (SR-A1 ΔMΦ) mice showed significantly lower laser doppler blood flow in the ischemic limb at day 7 after HLI. Consistently, histological analysis exhibited that ischemic limb of SR-A1 ΔMΦ mice displayed more sever and sustained necrotic morphology, inflammation and fibrosis, decreased vessel density and regeneration rate, compared with which of control SR-A1 fl/fl mice. Furthermore, restoration of wild-type myeloid cells to SR-A1 knock-out mice effectively relieved the doppler perfusion in the ischemic limb and restrained skeletal muscle damage 7 days post HLI. In line with in vivo findings, when co-cultivating macrophages with the mouse myoblast line C2C12, SR-A1 -/- bone marrow macrophage significantly inhibited myoblast differentiation in vitro. Mechanically, SR-A1 enhanced skeletal muscle regeneration response to HLI by inhibiting the oncostatin M (OSM) production via suppressed NF-κB signaling activation. These results indicates that SR-A1 is a promising candidate molecule to improve tissue repair and regeneration in peripheral ischemic arterial disease.

9.
Cancer Res ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809694

ABSTRACT

Pancreatic cancer (PDAC) harbors a complex tumor microenvironment (TME), and crosstalk between cells in the TME can contribute to drug resistance and relapse. Vasoactive intestinal peptide (VIP) is overexpressed in PDAC, and VIP receptors expressed on T cells are a targetable pathway that sensitizes PDAC to immunotherapy. In this study, we showed that pancreatic cancer cells engage in autocrine VIP signaling through VIP receptor 2 (VPAC2). High co-expression of VIP with VPAC2 correlated with reduced relapse-free survival in PDAC patients. VPAC2 activation in PDAC cells upregulated piwi-like RNA-mediated gene silencing 2 (Piwil2), which stimulated cancer cell clonogenic growth. In addition, VPAC2 signaling increased expression of TGF-ß1 to inhibit T cell function. Loss of VPAC2 on PDAC cells led to reduced tumor growth and increased sensitivity to anti-PD1 immunotherapy in mouse models of PDAC. Overall, these findings expand our understanding of the role of VIP/VPAC2 signaling in PDAC and provide the rationale for developing potent VPAC2-specific antagonists for treating PDAC patients.

10.
Nat Commun ; 15(1): 4340, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773142

ABSTRACT

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Subject(s)
Apoptosis Regulatory Proteins , Disease Models, Animal , Lipopolysaccharides , MAP Kinase Kinase Kinases , Macrophages , Sepsis , Animals , Sepsis/immunology , Sepsis/drug therapy , Sepsis/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Male , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , Phosphorylation , Humans , Ubiquitination , Zearalenone/analogs & derivatives , Zearalenone/pharmacology , Zearalenone/administration & dosage , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Inflammation/metabolism , Inflammation/pathology , Phosphoric Monoester Hydrolases/metabolism , Mice, Knockout , Lactones , Resorcinols
11.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38804810

ABSTRACT

Pulsed power generators utilizing magnetic switch technology within the 100 ns scale have become widespread for surface treatment, high power microwave generation, and food processing, in which the dynamic characteristics of the magnetic switch perform an important function. The saturation process, electric field between layers, and energy loss are closely associated with the applied time scale of the magnetic core, which affects the dynamic characteristics of the switch. However, compared with the study within the microsecond scale, the dynamic characteristics of magnetic switches within the 100 ns scale have not been studied in depth. In this paper, the dynamic characteristics of a coaxial magnetic switch modulating pulse forming networks (PFNs) are studied via both field-loop co-simulation and scaled experimental test. It is found that increasing PFN section number (Ns) leads to an acceleration in the saturation process of the core, which helps understand the switch performance of the magnetic core more clearly. With respect to a specific magnetic switch based on a ferromagnetic core, it is quantitatively analyzed that increasing Ns from 1 to 10 leads to a 16.1% reduction in core saturation time (tsat), a 13.4% increase in eddy loss (EET), and a 5.7% rise in maximum interlamination field strength (Emax) under the 100 ns scale; however, tsat is reduced by 19.3%, EET increases by 5.2%, and Emax rises by 2.3% under the microsecond scale. The results could provide a design reference for magnetic switches in pulsed power generators.

12.
Animals (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731297

ABSTRACT

To explore the impacts of multiple environmental stressors on animal communities in aquatic ecosystems, we selected protozoa-a highly sensitive group of organisms-to assess the effect of environmental change. To conduct this simulation we conducted a three-factor, outdoor, mesocosm experiment from March to November 2021. Changes in the community structure and functional group composition of protozoan communities under the separate and combined effects of these three environmental stressors were investigated by warming and the addition of nitrogen, phosphorus, and pesticides. The results were as follows: (1) Both eutrophication and pesticides had a considerable promotional effect on the abundance and biomass of protozoa; the effect of warming was not considerable. When warming was combined with eutrophication and pesticides, there was a synergistic effect and antagonistic effect, respectively. (2) Eutrophication promoted α diversity of protozoa and affected their species richness and dominant species composition; the combination of warming and pesticides remarkably reduced the α diversity of protozoa. (3) Warming, eutrophication, and pesticides were important factors affecting the functional groups of protozoa. Interaction among different environmental factors could complicate changes in the aquatic ecological environment and its protozoan communities. Indeed, in the context of climate change, it might be more difficult to predict future trends in the protozoan community. Therefore, our results provide a scientific basis for the protection and restoration of shallow lake ecosystems; they also offer valuable insights in predicting changes in shallow lakes.

13.
Carbohydr Polym ; 338: 122193, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763708

ABSTRACT

Efficient purification of gamma-cyclodextrin (γ-CD) is always challenging due to its structural similarity to other CDs and low crystallinity in water. In addressing this issue, an approach was proposed based on the formation mechanism of cyclodextrin metal-organic frameworks (CD-MOFs). This method involved the selective coordination of CDs mixture with potassium ions in water, facilitated by ethanol-induced crystallization, leading to the purification of γ-CD. The results showed that potassium ions enhanced γ-CD crystallization, and ethanol was crucial to selectively coordinating potassium ions with γ-CD. The characterizations revealed that the resulting CD-MOFs exhibited a small particle size, high surface area, and high thermal stability, and was identical to γ-CD-MOF, further indicating the final γ-CD with high purity. The separation factors of γ-CD/α-CD and γ-CD/ß-CD were 309 and 260, respectively. Moreover, this method was validated through its application to the industrial enzymatic CDs mixture. The purification of γ-CD could achieve 99.99 ± 0.01 % after four crystallization cycles. Therefore, selectively coordinating with potassium ions to form MOFs provided a valuable reference for the purification of γ-CD and even the direct synthesis of γ-CD-MOF from CDs mixture. This advancement will also benefit the future production and application of γ-CD.

14.
Comput Struct Biotechnol J ; 23: 1298-1310, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38560280

ABSTRACT

In gestational diabetes mellitus (GDM), adipose tissue undergoes metabolic disturbances and chronic low-grade inflammation. Alternative polyadenylation (APA) is a post-transcriptional modification mechanism that generates mRNA with variable lengths of 3' untranslated regions (3'UTR), and it is associated with inflammation and metabolism. However, the role of APA in GDM adipose tissue has not been well characterized. In this study, we conducted transcriptomic and proteomic sequencing on subcutaneous and omental adipose tissues from both control and GDM patients. Using Dapars, a novel APA quantitative algorithm, we delineated the APA landscape of adipose tissue, revealing significant 3'UTR elongation of mRNAs in the GDM group. Omental adipose tissue exhibited a significant correlation between elongated 3'UTRs and reduced translation levels of genes related to metabolism and inflammation. Validation experiments in THP-1 derived macrophages (TDMs) demonstrated the impact of APA on translation levels by overexpressing long and short 3'UTR isoforms of a representative gene LRRC25. Additionally, LRRC25 was validated to suppress proinflammatory polarization in TDMs. Further exploration revealed two underexpressed APA trans-acting factors, CSTF3 and PPP1CB, in GDM omental adipose tissue. In conclusion, this study provides preliminary insights into the APA landscape of GDM adipose tissue. Reduced APA regulation in GDM omental adipose tissue may contribute to metabolic disorders and inflammation by downregulating gene translation levels. These findings advance our understanding of the molecular mechanisms underlying GDM-associated adipose tissue changes.

15.
Can Assoc Radiol J ; : 8465371241238917, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577746

ABSTRACT

PURPOSE: To assess the diagnostic utility of clinical magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) in distinguishing between histological grading and isocitrate dehydrogenase (IDH) classification in adult diffuse gliomas. METHODS: A retrospective analysis was conducted on 247 patients diagnosed with adult diffuse glioma. Experienced radiologists evaluated DWI and MRS images. The Kruskal-Wallis test examined differences in DWI and MRS-related parameters across histological grades, while the Mann-Whitney U test assessed molecular classification. Receiver Operating Characteristic (ROC) curves evaluated parameter effectiveness. Survival curves, stratified by histological grade and IDH classification, were constructed using the Kaplan-Meier test. RESULTS: The cohort comprised 141 males and 106 females, with ages ranging from 19 to 85 years. The Kruskal-Wallis test revealed significant differences in ADC mean, Cho/NAA, and Cho/Cr concerning glioma histological grade (P < .01). Subsequent application of Dunn's test showed significant differences in ADC mean among each histological grade (P < .01). Notably, Cho/NAA exhibited a marked distinction between grade 2 and grade 3/4 gliomas (P < .01). The Mann-Whitney U test indicated that only ADC mean showed statistical significance for IDH molecular classification (P < .01). ROC curves were constructed to demonstrate the effectiveness of the specified parameters. Survival curves were also delineated to portray survival outcomes categorized by histological grade and IDH classification. Conclusions: Clinical MRS demonstrates efficacy in glioma histological grading but faces challenges in IDH classification. Clinical DWI's ADC mean parameter shows significant distinctions in both histological grade and IDH classification.

16.
BMC Pediatr ; 24(1): 227, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561715

ABSTRACT

BACKGROUND: Summarizing the clinical features of children with intussusception secondary to small bowel tumours and enhancing awareness of the disease. METHODS: Retrospective summary of children with intussusception admitted to our emergency department from January 2016 to January 2022, who underwent surgery and were diagnosed with small bowel tumours. Summarize the types of tumours, clinical presentation, treatment, and prognosis. RESULTS: Thirty-one patients were included in our study, 24 males and 7 females, with an age of onset ranging from 1 m to 11y 5 m. Post-operative pathology revealed 4 types of small intestinal tumour, 17 lymphomas, 10 adenomas, 4 inflammatory myofibroblastomas and 1 lipoma. The majority of tumours in the small bowel occur in the ileum (83.9%, 26/31). Abdominal pain, vomiting and bloody stools were the most common clinical signs. Operative findings indicated that the small bowel (54.8%, 17/31) and ileocolic gut were the main sites of intussusception. Two types of procedure were applied: segmental bowel resection (28 cases) and wedge resection of mass in bowel wall (3 cases). All patients recovered well postoperatively, with no surgical complications observed. However, the primary diseases leading to intussusception showed slight differences in long-term prognosis due to variations in tumor types. CONCLUSIONS: Lymphoma is the most common cause of intussusception in pediatric patients with small bowel tumours, followed by adenoma. Small bowel tumours in children tend to occur in the ileum. Therefore, the treatment of SBT patients not only requires surgeons to address symptoms through surgery and obtain tissue samples but also relies heavily on the expertise of pathologists for accurate diagnosis. This has a significant impact on the overall prognosis of these patients.


Subject(s)
Intestinal Neoplasms , Intussusception , Male , Female , Humans , Child , Intussusception/etiology , Intussusception/surgery , Retrospective Studies , Intestinal Neoplasms/complications , Intestinal Neoplasms/surgery , Abdominal Pain/complications , Intestine, Small/surgery
17.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562852

ABSTRACT

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes. Using RNAseq, we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Interestingly, for three schizophrenia risk genes (SETD1A, TRIO, CUL1), despite the high efficiency of base editing, we only obtained heterozygous LoF alleles, suggesting their essential roles for cell growth. We replicated the reported neural phenotypes of SHANK3-haploinsufficiency and found CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.

18.
Mov Disord ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610104

ABSTRACT

BACKGROUND: The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE: The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS: We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS: GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS: rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

19.
Angew Chem Int Ed Engl ; : e202401238, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651232

ABSTRACT

Emerging high entropy compounds (HECs) have attracted huge attention in electrochemical energy-related applications. The features of ultrafine size and carbon incorporation show great potential to boost the ion-storage kinetics of HECs. However, they are rarely reported because high-temperature calcination tends to result in larger crystallites, phase separation, and carbon reduction. Herein, using the NaCl self-assembly template method, by introducing a high-pressure field in the calcination process, the atom diffusion and phase separation are inhibited for the general formation of HECs, and the HEC aggregation is inhibited for obtaining ultrafine size. The general preparation of ultrafine-sized (<10 nm) HECs (nitrides, oxides, sulfides, and phosphates) anchored on porous carbon composites is realized. They are demonstrated by combining advanced characterization technologies with theoretical computations. Ultrafine-sized high entropy sulfides-MnFeCoCuSnMo/porous carbon (HES-MnFeCoCuSnMo/PC) as representative anodes exhibit excellent sodium-ion storage kinetics and capacities (a high rating capacity of 278 mAh g-1 at 10 A g-1 for full cell and a high cycling capacity of 281 mAh g-1 at 20 A g-1 after 6000 cycles for half cell) due to the combining advantages of high entropy effect, ultrafine size, and PC incorporation. Our work provides a new opportunity for designing and fabricating ultrafine-sized HECs.

20.
Foods ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611279

ABSTRACT

The detection of the storage state of frozen meat, especially meat frozen-thawed several times, has always been important for food safety inspections. Hyperspectral imaging (HSI) is widely applied to detect the freshness and quality of meat or meat products. This study investigated the feasibility of the low-cost HSI system, combined with the chemometrics method, to classify beef cuts among fresh (F), frozen-stored (F-S), frozen-thawed three times (F-T-3) and frozen-thawed five times (F-T-5). A compact, low-cost HSI system was designed and calibrated for beef sample measurement. The classification model was developed for meat analysis with a method to distinguish fat and muscle, a CARS algorithm to extract the optimal wavelength subset and three classifiers to identify each beef cut among different freezing processes. The results demonstrated that classification models based on feature variables extracted from differentiated tissue spectra achieved better performances, with ACCs of 92.75% for PLS-DA, 97.83% for SVM and 95.03% for BP-ANN. A visualization map was proposed to provide detailed information about the changes in freshness of beef cuts after freeze-thawing. Furthermore, this study demonstrated the potential of implementing a reasonably priced HSI system in the food industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...