Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 12(12)2021 12 15.
Article in English | MEDLINE | ID: mdl-34946942

ABSTRACT

Potentilla anserina is a perennial stoloniferous plant with edible tuberous roots in Rosaceae, served as important food and medicine sources for Tibetans in the Qinghai-Tibetan Plateau (QTP), China, over thousands of years. However, a lack of genome information hindered the genetic study. Here, we presented a chromosome-level genome assembly using single-molecule long-read sequencing, and the Hi-C technique. The assembled genome was 454.28 Mb, containing 14 chromosomes, with contig N50 of 2.14 Mb. A total of 46,495 protein-coding genes, 169.74 Mb repeat regions, and 31.76 Kb non-coding RNA were predicted. P. anserina diverged from Potentilla micrantha ∼28.52 million years ago (Mya). Furthermore, P. anserina underwent a recent tetraploidization ∼6.4 Mya. The species-specific genes were enriched in Starch and sucrose metabolism and Galactose metabolism pathways. We identified the sub-genome structures of P. anserina, with A sub-genome was larger than B sub-genome and closer to P. micrantha phylogenetically. Despite lacking significant genome-wide expression dominance, the A sub-genome had higher homoeologous gene expression in shoot apical meristem, flower and tuberous root. The resistance genes was contracted in P. anserina genome. Key genes involved in starch biosynthesis were expanded and highly expressed in tuberous roots, which probably drives the tuber formation. The genomics and transcriptomics data generated in this study advance our understanding of the genomic landscape of P. anserina, and will accelerate genetic studies and breeding programs.


Subject(s)
Genome/genetics , Plant Roots/genetics , Potentilla/genetics , China , Evolution, Molecular , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genomics/methods , Phylogeny , Plant Tubers/genetics , Transcriptome/genetics
2.
Front Plant Sci ; 12: 625520, 2021.
Article in English | MEDLINE | ID: mdl-34220876

ABSTRACT

Selenium is an essential microelement for humans and animals. The specific processing technique of oats can maximize the preservation of its nutrients. In this study, to understand the genetic response of oats in a high-selenium environment, oats were treated with sodium selenate for 24 h, and transcriptome analysis was performed. A total of 211,485,930 clean reads composing 31.30 Gb of clean data were retained for four samples. After assembly, 186,035 unigenes with an average length of 727 bp were generated, and the N50 length was 1,149 bp. Compared with that in the control group, the expression of 7,226 unigenes in the treatment group was upregulated, and 2,618 unigenes were downregulated. Based on the sulfur assimilation pathway and selenocompound metabolic pathway, a total of 27 unigenes related to selenate metabolism were identified. Among them, the expression of both key genes APS (ATP sulfurylase) and APR (adenosine 5'-phosphosulfate reductase) was upregulated more than 1,000-fold under selenate treatment, while that of CBL (cystathionine-ß-synthase) was upregulated 3.12-fold. Based on the transcriptome analysis, we suspect that the high-affinity sulfur transporter Sultr1;2 plays a key role in selenate uptake in oats. A preliminary regulatory mechanism explains the oat response to selenate treatment was ultimately proposed based on the transcriptome analysis and previous research.

3.
Plant Dis ; 104(10): 2658-2664, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32749944

ABSTRACT

There has not been a major wheat stem rust epidemic worldwide since the 1970s, but the emergence of race TTKSK of Puccinia graminis f. sp. tritici in 1998 presented a great threat to the world wheat production. Single disease-resistance genes are usually effective for only several years before the pathogen changes genetically to overcome the resistance. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most common and persistent wheat diseases worldwide. The development of varieties with multiple resistance is the most economical and effective strategy for preventing stripe rust and stem rust, the two main rust diseases constraining wheat production. Plateau 448 has been widely used in the spring wheat growing region in northwest China, but it has become susceptible to stripe rust and is susceptible to TTKSK. To produce more durable resistance to race TTKSK as well as to stripe rust, four stem rust resistance genes (Sr33, Sr36, Sr-Cad, and Sr43) and three stripe rust resistance genes (Yr5, Yr18, and Yr26) were simultaneously introgressed into Plateau 448 to improve its stem rust (Ug99) and stripe rust resistance using a marker-assisted backcrossing strategy combined with phenotypic selection. We obtained 131 BC1F5 lines that pyramided two to four Ug99 resistance genes and one to two Pst resistance genes simultaneously. Thirteen of these lines were selected for their TTKSK resistance, and all of them exhibited near immunity or high resistance to TTKSK. Among the 131 pyramided lines, 95 showed high resistance to mixed Pst races. Nine lines exhibited not only high resistance to TTKSK and Pst but also better agronomic traits and high-molecular-weight glutenin subunit compositions than Plateau 448.


Subject(s)
Basidiomycota , Plant Diseases/genetics , Breeding , China , Disease Resistance/genetics , Humans
4.
Int J Mol Sci ; 21(11)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486482

ABSTRACT

Thousand-grain weight (TGW) is a very important yield trait of crops. In the present study, we performed quantitative trait locus (QTL) analysis of TGW in a doubled haploid population obtained from a cross between the bread wheat cultivar "Superb" and the breeding line "M321" using the wheat 55-k single-nucleotide polymorphism (SNP) genotyping assay. A genetic map containing 15,001 SNP markers spanning 2209.64 cM was constructed, and 9 QTLs were mapped to chromosomes 1A, 2D, 4B, 4D, 5A, 5D, 6A, and 6D based on analyses conducted in six experimental environments during 2015-2017. The effects of the QTLs qTgw.nwipb-4DS and qTgw.nwipb-6AL were shown to be strong and stable in different environments, explaining 15.31-32.43% and 21.34-29.46% of the observed phenotypic variance, and they were mapped within genetic distances of 2.609 cM and 5.256 cM, respectively. These novel QTLs may be used in marker-assisted selection in wheat high-yield breeding.


Subject(s)
Chromosome Mapping , Haploidy , Plant Breeding , Quantitative Trait Loci , Triticum/genetics , Alleles , Edible Grain/genetics , Genes, Plant , Genetic Linkage , Genetic Markers , Microsatellite Repeats , Phenotype , Polymorphism, Single Nucleotide , Seeds
5.
Hereditas ; 157(1): 14, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32312318

ABSTRACT

BACKGROUND: Jerusalem artichoke (Helianthus tuberosus) is a fructan-accumulating plant, and an industrial source of raw material for fructan production, but the crucial enzymes involved in fructan biosynthesis remain poorly understood in this plant. RESULTS: In this study, a fructan: fructan 1-fructosyl-transferase (1-FFT) gene, Ht1-FFT, was isolated from Jerusalem artichoke. The coding sequence of Ht1-FFT was 2025 bp in length, encoding 641 amino acids. Ht1-FFT had the type domain of the 1-FFT protein family, to which it belonged, according to phylogenetic tree analysis, which implied that Ht1-FFT had the function of catalyzing the formation and extension of beta-(2,1)-linked fructans. Overexpression of Ht1-FFT in the leaves of transgenic tobacco increased fructan concentration. Moreover, the soluble sugar and proline concentrations increased, and the malondialdehyde (MDA) concentration was reduced in the transgenic lines. The changes in these parameters were associated with increased stress tolerance exhibited by the transgenic tobacco plants. A PEG-simulated drought stress experiment confirmed that the transgenic lines exhibited increased PEG-simulated drought stress tolerance. CONCLUSIONS: The 1-FFT gene from Helianthus tuberosus was a functional fructan: fructan 1-fructosyl-transferase and played a positive role in PEG-simulated drought stress tolerance. This transgene could be used to increase fructan concentration and PEG-simulated drought stress tolerance in plants by genetic transformation.


Subject(s)
Droughts , Helianthus/enzymology , Hexosyltransferases/genetics , Nicotiana/physiology , Stress, Physiological , Helianthus/genetics , Plant Proteins/genetics , Plants, Genetically Modified/physiology , Nicotiana/genetics
6.
Plant Cell Rep ; 38(10): 1291-1298, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31352584

ABSTRACT

KEY MESSAGE: RNA-Seq was employed to compare the transcriptome differences between the triticale lines and to identify the key gene responsible for the blue aleurone trait. The accumulation of anthocyanins in the aleurone of triticale results in the formation of the blue-grained trait, but the identity of the genes associated with anthocyanin biosynthesis in the aleurone has not yet been reported. In this manuscript, RNA-Seq was employed to compare the transcriptome differences between the triticale lines HM13 (blue aleurone) and HM5 (white aleurone), and to identify the key genes responsible for the blue aleurone trait. There were 32,406 differentially expressed genes between HM13 and HM5. Seventy-three unigenes were homologous to the structural genes related to anthocyanin biosynthesis, and the average transcript level of the structural genes was higher in HM13 than in HM5, so that quantitative differences between the two lines in transcription rates could be the cause of the blue aleurone. The MYB and bHLH transcription factors had two homologous unigenes, but contained only one differentially expressed unigene each. The relative transcript level of bHLH Unigene5672_All (TsMYC2) in HM13 was 42.71 times that in HM5, while the relative transcript level of the MYB transcription factor Unigene12228_All in HM13 was 2.20 times that in HM5. qPCR experiments determined the relative transcript level of TsMYC2 in developing grain, with the expression of TsMYC2 in grain being the highest compared with that in root, stem or leaf tissue. TsMYC2 was homologous to the bHLH transcription factor regulating anthocyanin biosynthesis and contained three entire functional domains: bHLH-MYC_N, HLH and ACT-like, which were important for exercising regulation of anthocyanin biosynthesis as a bHLH transcription factor. Transient expression of ZmC1 and TsMYC2 could induce anthocyanin biosynthesis in white wheat coleoptile cells, demonstrating that TsMYC2 was a functional bHLH transcription factor. These results indicated that TsMYC2 was associated with the blue aleurone trait and could prove to be a valuable gene with which to breed new triticale cultivars with the blue aleurone trait.


Subject(s)
Plant Proteins/metabolism , Transcription Factors/metabolism , Transcriptome/genetics , Triticale/metabolism , Anthocyanins/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Secale/genetics , Secale/metabolism , Transcription Factors/genetics , Triticale/genetics , Triticum/genetics , Triticum/metabolism
7.
Theor Appl Genet ; 132(8): 2285-2294, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31049633

ABSTRACT

KEY MESSAGE: Introgressing one-eighth of synthetic hexaploid wheat genome through a double top-cross plus a two-phase selection is an effective strategy to develop high-yielding wheat varieties. The continued expansion of the world population and the likely onset of climate change combine to form a major crop breeding challenge. Genetic advances in most crop species to date have largely relied on recombination and reassortment within a relatively narrow gene pool. Here, we demonstrate an efficient wheat breeding strategy for improving yield potentials by introgression of multiple genomic regions of de novo synthesized wheat. The method relies on an initial double top-cross (DTC), in which one parent is synthetic hexaploid wheat (SHW), followed by a two-phase selection procedure. A genotypic analysis of three varieties (Shumai 580, Shumai 969 and Shumai 830) released from this program showed that each harbors a unique set of genomic regions inherited from the SHW parent. The first two varieties were generated from very small populations, whereas the third used a more conventional scale of selection since one of bread wheat parents was a pre-breeding material. The three varieties had remarkably enhanced yield potential compared to those developed by conventional breeding. A widely accepted consensus among crop breeders holds that introducing unadapted germplasm, such as landraces, as parents into a breeding program is a risky proposition, since the size of the breeding population required to overcome linkage drag becomes too daunting. However, the success of the proposed DTC strategy has demonstrated that novel variation harbored by SHWs can be accessed in a straightforward, effective manner. The strategy is in principle generalizable to any allopolyploid crop species where the identity of the progenitor species is known.


Subject(s)
Bread , Gene Pool , Plant Breeding , Polyploidy , Triticum/genetics , Alleles , Crosses, Genetic , Genes, Plant , Genotype , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
8.
Molecules ; 24(5)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866466

ABSTRACT

Red coleoptiles can help crops to cope with adversity and the key genes that are responsible for this trait have previously been isolated from Triticum aestivum, Triticum urartu, and Aegilops tauschii. This report describes the use of transcriptome analysis to determine the candidate gene that controls the trait for white coleoptiles in T. monococcum by screening three cultivars with white coleoptiles and two with red coleoptiles. Fifteen structural genes and two transcription factors that are involved in anthocyanin biosynthesis were identified from the assembled UniGene database through BLAST analysis and their transcript levels were then compared in white and red coleoptiles. The majority of the structural genes reflected lower transcript levels in the white than in the red coleoptiles, which implied that transcription factors related to anthocyanin biosynthesis could be candidate genes. The transcript levels of MYC transcription factor TmMYC-A1 were not significantly different between the white and red coleoptiles and all of the TmMYC-A1s contained complete functional domains. The deduced amino acid sequence of the MYB transcription factor TmMYB-A1 in red coleoptiles was homologous to TuMYB-A1, TaMYB-A1, TaMYB-B1, and TaMYB-D1, which control coleoptile color in corresponding species and contained the complete R2R3 MYB domain and the transactivation domain. TmMYB-a1 lost its two functional domains in white coleoptiles due to a single nucleotide deletion that caused premature termination at 13 bp after the initiation codon. Therefore, TmMYB-A1 is likely to be the candidate gene for the control of the red coleoptile trait, and its loss-of-function mutation leads to the white phenotype in T. monococcum.


Subject(s)
Cotyledon/genetics , Gene Expression Profiling/methods , Transcription Factors/genetics , Triticum/anatomy & histology , Anthocyanins/biosynthesis , Cotyledon/anatomy & histology , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Mutation , Plant Proteins/genetics , Quantitative Trait Loci , Sequence Analysis, RNA , Triticum/genetics
9.
BMC Genet ; 20(1): 9, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30642243

ABSTRACT

BACKGROUND: Selenium (Se), an essential micronutrient in both animals and humans, has various biological functions, and its deficiency can lead to various diseases. The most common method for increasing Se uptake is the consumption of Se-rich plants, which transform inorganic Se into organic forms. Wheat is eaten daily by many people. The Se content of Aegilops tauschii (Ae. tauschii), one of the ancestors of hexaploid common wheat, is generally higher than that of wheat. In this study, two genotypes of Ae. tauschii with contrasting Se-accumulating abilities were subjected to different Se treatments followed by high-throughput transcriptome sequencing. RESULTS: Sequencing of 12 transcriptome libraries of Ae. tauschii grown under different Se treatments produced about a total of 47.72 GB of clean reads. After filtering out rRNA sequences, approximately 19.3 million high-quality clean reads were mapped to the reference genome (ta IWGSC_MIPSv2.1 genome DA). The total number of reference genome gene is 32,920 and about 26,407 known genes were detected in four groups. Functional annotation of these mapped genes revealed a large number of genes and some pivotal pathways that may participate in Se metabolism. The expressions of several genes potentially involved in Se metabolism were confirmed by quantitative real-time PCR. CONCLUSIONS: Our study, the first to examine Se metabolism in Ae. tauschii, has provided a theoretical foundation for future elucidation of the mechanism of Se metabolism in this species.


Subject(s)
Gene Expression Profiling , Genotype , Poaceae/drug effects , Poaceae/genetics , Selenium/metabolism , Selenium/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Poaceae/metabolism , Transcription Factors/metabolism
10.
Plant Physiol Biochem ; 130: 89-93, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29980097

ABSTRACT

The abundant genetic diversity in synthetic hexaploid wheat (SHW) can achieve breakthroughs in wheat genetic improvement, but little is known of the genetic mechanisms involved. In this study, three populations of advanced lines (totaling 284 individuals), derived from three top-crosses of SHW-L1 with different common wheat cultivars, followed by ten generations of artificial selection, were used to evaluate the transfer of alien alleles with 24872 Diversity Arrays Technology (DArT) markers. Only 1824, 1786 and 1514 DArT markers were needed to distinguish the alleles from SHW-L1 and the other common wheat parent in the populations SCPD, SS7M and SSYZ, respectively. The data clearly showed that all the advanced lines contained alien alleles from SHW-L1. The lowest percentage of alien alleles was 6.97% in an advanced line in population SSYZ, while the biggest was 30.41% in a SCPD advanced lines. The percentages of alien alleles at each locus ranged from 0% to 100% in all three populations. Forty-four alien alleles did not exist in all advanced lines, while two alien alleles were present in all advanced lines. Two of the 100% alien alleles were associated with thousand-grain weight and leaf rust resistance. Thirteen alien alleles were associated with grain yield, grain thickness and width, thousand-grain weight, grain weight/ear, plant height, grain weight, grain number, powdery mildew resistance, spikelet number per spike or yellow rust resistance. The research provided direct evidence of the existence of alien alleles in advanced lines and detected a number of valuable alleles related to wheat yield or disease resistance. More research is needed to analyze the functional mechanisms of these alleles, and to use these materials and alleles in wheat improvement.


Subject(s)
Gene Expression Regulation, Plant/physiology , Plants, Genetically Modified , Triticum/genetics , Alleles , Genetic Variation
11.
Genetica ; 146(1): 45-51, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29030762

ABSTRACT

Avenin-like storage proteins influence the rheological properties and processing quality in common wheat, and the discovery of new alleles will benefit wheat quality improvement. In this study, 13 avenin-like b alleles (TaALPb7D-A-M) were discovered in 108 Aegilops tauschii Coss. accessions. Ten alleles were reported for the first time, while the remaining three alleles were the same as alleles in other species. A total of 15 nucleotide changes were detected in the 13 alleles, resulting in only 11 amino acid changes because of synonymous mutations. Alleles TaALPb7D-E, TaALPb7D-G, and TaALPb7D-J encoded the same protein. These polymorphic sites existed in the N-terminus, Repetitive region (Left), Repetitive region (Right) and C-terminus domains, with no polymorphisms in the signal peptide sequence nor in those encoding the 18 conserved cysteine residues. Phylogenetic analysis divided the TaALPb7Ds into four clades. The Ae. tauschii alleles were distributed in all four clades, while the alleles derived from common wheat, TaALPb7D-G and TaALPb7D-C, belonged to clade III and IV, respectively. Alleles TaALPb7D-G and TaALPb7D-C were the most widely distributed, being present in nine and six countries, respectively. Iran and Turkey exhibited the highest genetic diversity with respect to TaALPb7D alleles, accessions from these countries carrying seven and six alleles, respectively, which implied that these countries were the centers of origin of the avenin-like b gene. The new alleles discovered and the phylogenetic analysis of avenin-like b genes will provide breeding materials and a theoretical basis for wheat quality improvement.


Subject(s)
Genetic Variation , Poaceae/genetics , Prolamins/genetics , Alleles , Genes, Plant , Phylogeny , Polymorphism, Single Nucleotide , Prolamins/classification
12.
Molecules ; 22(12)2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29258257

ABSTRACT

The red coleoptile trait can help monocotyledonous plants withstand stresses, and key genes responsible for the trait have been isolated from Triticum aestivum, Triticum urartu, and Triticum monococcum, but no corresponding research has been reported for Aegilops tauschii. In this research, transcriptome analysis was performed to isolate the candidate gene controlling the white coleoptile trait in Ae. tauschii. There were 5348 upregulated, differentially-expressed genes (DEGs) and 4761 downregulated DEGs in red coleoptile vs. white coleoptile plants. Among these DEGs, 12 structural genes and two transcription factors involved in anthocyanin biosynthesis were identified. The majority of structural genes showed lower transcript abundance in the white coleoptile of accession 'As77' than in the red coleoptile of accession 'As60', which implied that transcription factors related to anthocyanin biosynthesis could be the candidate genes. The MYB and MYC transcription factors AetMYB7D and AetMYC1 were both isolated from Ae. tauschii accessions 'As60' and 'As77', and their transcript levels analyzed. The coding sequence and transcript level of AetMYB7D showed no difference between 'As60' and 'As77'. AetMYC1p encoded a 567-amino acid polypeptide in 'As60' containing the entire characteristic domains, bHLH-MYC_N, HLH, and ACT-like, belonging to the gene family involved in regulating anthocyanin biosynthesis. AetMYC1w encoded a 436-amino acid polypeptide in 'As77' without the ACT-like domain because a single nucleotide mutation at 1310 bp caused premature termination. Transient expression of AetMYC1p induced anthocyanin biosynthesis in 'As77' with the co-expression of AetMYB7D, while AetMYC1w could not cause induced anthocyanin biosynthesis under the same circumstances. Moreover, the transcript abundance of AetMYC1w was lower than that of AetMYC1p. AetMYC1 appears to be the candidate gene controlling the white coleoptile trait in Ae. tauschii, which can be used for potential biotech applications, such as producing new synthetic hexaploid wheat lines with different coleoptile colors.


Subject(s)
Gene Expression Profiling/methods , Plant Proteins/genetics , Poaceae/genetics , Anthocyanins/biosynthesis , Cotyledon/genetics , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Plant Proteins/chemistry , Poaceae/metabolism , Protein Domains , Quantitative Trait Loci , Sequence Analysis, RNA
13.
Front Plant Sci ; 8: 1645, 2017.
Article in English | MEDLINE | ID: mdl-28983311

ABSTRACT

Recently the TaMYC1 gene encoding bHLH transcription factor has been isolated from the bread wheat (Triticum aestivum L.) genome and shown to co-locate with the Pp3 gene conferring purple pericarp color. As a functional evidence of TaMYC1 and Pp3 being the same, higher transcriptional activity of the TaMYC1 gene in colored pericarp compared to uncolored one has been demonstrated. In the current study, we present additional strong evidences of TaMYC1 to be a synonym of Pp3. Furthermore, we have found differences between dominant and recessive Pp3(TaMyc1) alleles. Light enhancement of TaMYC1 transcription was paralleled with increased AP accumulation only in purple-grain wheat. Coexpression of TaMYC1 and the maize MYB TF gene ZmC1 induced AP accumulation in the coleoptile of white-grain wheat. Suppression of TaMYC1 significantly reduced AP content in purple grains. Two distinct TaMYC1 alleles (TaMYC1p and TaMYC1w) were isolated from purple- and white-grained wheat, respectively. A unique, compound cis-acting regulatory element had six copies in the promoter of TaMYC1p, but was present only once in TaMYC1w. Analysis of recombinant inbred lines showed that TaMYC1p was necessary but not sufficient for AP accumulation in the pericarp tissues. Examination of larger sets of germplasm lines indicated that the evolution of purple pericarp in tetraploid wheat was accompanied by the presence of TaMYC1p. Our findings may promote more systematic basic and applied studies of anthocyanins in common wheat and related Triticeae crops.

14.
PLoS One ; 12(7): e0181116, 2017.
Article in English | MEDLINE | ID: mdl-28704468

ABSTRACT

Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1) transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH) transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like) of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Profiling/methods , Triticum/genetics , Anthocyanins/metabolism , Cloning, Molecular , Genes, Plant , Phylogeny , Quantitative Trait Loci , Sequence Analysis, RNA/methods
15.
Theor Appl Genet ; 130(4): 757-766, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28258369

ABSTRACT

KEY MESSAGE: The early flowering of Lalu was determined to be due to a novel spontaneous eam8 mutation, which resulted in intron retention and the formation of a putative truncated protein. Barley is a staple crop grown over an extensive area in the Qinghai-Tibetan Plateau. Understanding the genetic mechanism for its success in a high altitude is important for crop improvement in marginal environments. Early flowering is a critical adaptive trait that strongly influences reproductive fitness in a short growing season. Loss-of-function mutations at the circadian clock gene EARLY MATURITY 8 (EAM8) promote rapid flowering. In this study, we identified a novel, spontaneous recessive eam8 mutant with an early flowering phenotype in a Tibetan barley landrace Lalu, which is natively grown at a high altitude of approximately 4000 m asl. The co-segregation analysis in a F2 population derived from the cross Lalu (early flowering) × Diqing 1 (late flowering) confirmed that early flowering of Lalu was determined to be due to an allele at EAM8. The eam8 allele from Lalu carries an A/G alternative splicing mutation at position 3257 in intron 3, designated eam8.l; this alternative splicing event leads to intron retention and a putative truncated protein. Of the 134 sequenced barley accessions, which are primarily native to the Qinghai-Tibet Plateau, three accessions carried this mutation. The eam8.l mutation was likely to have originated in wild barley due to the presence of the Lalu haplotype in H. spontaneum from Tibet. Overall, alternative splicing has contributed to the evolution of the barley circadian clock and in the short-season adaptation of local barley germplasm. The study has also identified a novel donor of early-flowering barley which will be useful for barley improvement.


Subject(s)
Alternative Splicing , CLOCK Proteins/genetics , Flowers/physiology , Hordeum/genetics , Plant Proteins/genetics , Seasons , Adaptation, Physiological/genetics , Alleles , Altitude , CLOCK Proteins/physiology , China , Chromosome Mapping , DNA, Plant/genetics , Genes, Plant , Haplotypes , Hordeum/physiology , Mutation , Phenotype , Plant Proteins/physiology , Sequence Analysis, DNA
16.
BMC Genomics ; 18(1): 149, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28187716

ABSTRACT

BACKGROUND: The formation of an allopolyploid is a two step process, comprising an initial wide hybridization event, which is later followed by a whole genome doubling. Both processes can affect the transcription of homoeologues. Here, RNA-Seq was used to obtain the genome-wide leaf transcriptome of two independent Triticum turgidum × Aegilops tauschii allotriploids (F1), along with their spontaneous allohexaploids (S1) and their parental lines. The resulting sequence data were then used to characterize variation in homoeologue transcript abundance. RESULTS: The hybridization event strongly down-regulated D-subgenome homoeologues, but this effect was in many cases reversed by whole genome doubling. The suppression of D-subgenome homoeologue transcription resulted in a marked frequency of parental transcription level dominance, especially with respect to genes encoding proteins involved in photosynthesis. Singletons (genes where no homoeologues were present) were frequently transcribed at both the allotriploid and allohexaploid plants. CONCLUSIONS: The implication is that whole genome doubling helps to overcome the phenotypic weakness of the allotriploid, restoring a more favourable gene dosage in genes experiencing transcription level dominance in hexaploid wheat.


Subject(s)
Genome, Plant/genetics , Hybridization, Genetic , Polyploidy , Sequence Homology, Nucleic Acid , Triticum/genetics , Down-Regulation/genetics , Phenotype , RNA, Messenger/genetics
17.
Mol Genet Genomics ; 291(5): 1991-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27481288

ABSTRACT

Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in eukaryotic and prokaryotic genomes. In this article, a MITE, TaMITE81, was isolated from the 5' untranslated region (UTR) of TaCHS7BL, chalcone synthase (CHS) catalyzing the first committed step of anthocyanin biosynthesis, in the wheat cultivar 'Opata' with white grain. TaMITE81 was only 81 nucleotides, including a terminal inverted repeat with 39 nucleotides and was flanked by two nucleotides, "TA", target site duplications that were typical features of stowaway-like MITEs. Compared with the wheat cultivar 'Gy115' with purple grain, which is without the insertion, the expression of TaCHS7BL was lower in several organs of 'Opata'. The insertion of TaMITE81 into the 5' UTR of the GUS gene also reduced the transient expression of GUS on the coleoptiles of 'Opata', which means the insertion of TaMITE81 was the reason for the low expression of TaCHS7BL in 'Opata'. But the genotype of TaCHS7BL was not linked to phenotype of grain color in the RILs derived from a cross 'Gy115' and 'Opata'. The TaMITE81 density of the hexaploid variety of T. aestivum was more than 10 times that of diploid relatives, which implies that polyploidization caused the amplification of TaMITE81 homologous sequences. Further research should be conducted on decoding the relationship between TaCHS7BL and other traits relative to anthocyanin biosynthesis in wheat, and discovering the mechanism of TaMITE81 transposon action.


Subject(s)
Acyltransferases/genetics , DNA Transposable Elements , Gene Expression Profiling/methods , Triticum/genetics , 5' Untranslated Regions , Evolution, Molecular , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Plant Proteins/genetics , Polyploidy , Quantitative Trait Loci
18.
PLoS One ; 11(5): e0155428, 2016.
Article in English | MEDLINE | ID: mdl-27171148

ABSTRACT

Wheat (Triticum aestivum L.) cultivars possessing purple grain arethought to be more nutritious because of high anthocyanin contents in the pericarp. Comparative transcriptome analysis of purple (cv Gy115) and white pericarps was carried out using next-generation sequencing technology. There were 23,642 unigenes significantly differentially expressed in the purple and white pericarps, including 9945 up-regulated and 13,697 down-regulated. The differentially expressed unigenes were mainly involved in encoding components of metabolic pathways, The flavonoid biosynthesis pathway was the most represented in metabolic pathways. In the transcriptome of purple pericarp in Gy115, most structural and regulatory genes biosynthesizing anthocyanin were identified, and had higher expression levels than in white pericarp. The largestunigene of anthocyanin biosynthesis in Gy115 was longer than the reference genes, which implies that high-throughput sequencing could isolate the genes of anthocyanin biosynthesis in tissues or organs with high anthocyanin content. Based on present and previous results, three unigenes of MYB gene on chromosome 7BL and three unigenes of MYC on chromosome 2AL were predicted as candidate genes for the purple grain trait. This article was the first to provide a systematic overview comparing the transcriptomes of purple and white pericarps in common wheat, which should be very valuable for identifying the key genes for the purple pericarp trait.


Subject(s)
Endosperm/genetics , Gene Expression Profiling , Pigmentation/genetics , Triticum/genetics , Anthocyanins/biosynthesis , Flavonoids/biosynthesis , Gene Expression Regulation, Plant , Gene Ontology , Genes, Plant , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Reference Standards
19.
Genet Mol Biol ; 37(3): 540-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25249777

ABSTRACT

To examine whether cultivation reduced genetic variation in the important Chinese medicinal plant Rheum tanguticum, the levels and distribution of genetic variation were investigated using ISSR markers. Fifty-eight R. tanguticum individuals from five cultivated populations were studied. Thirteen primers were used and a total of 320 DNA bands were scored. High levels of genetic diversity were detected in cultivated R. tanguticum (PPB = 82.19, H = 0.2498, HB = 0.3231, I = 0.3812) and could be explained by the outcrossing system, as well as long-lived and human-mediated seed exchanges. Analysis of molecular variance (AMOVA) showed that more genetic variation was found within populations (76.1%) than among them (23.9%). This was supported by the coefficient of gene differentiation (Gst = 0.2742) and Bayesian analysis (θ B = 0.1963). The Mantel test revealed no significant correlation between genetic and geographic distances among populations (r = 0.1176, p = 0.3686). UPGMA showed that the five cultivated populations were separated into three clusters, which was in good accordance with the results provided by the Bayesian software STRUCTURE (K = 3). A short domestication history and no artificial selection may be an effective way of maintaining and conserving the gene pools of wild R. tanguticum.

20.
G3 (Bethesda) ; 4(10): 1943-53, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25128436

ABSTRACT

Meiotic nonreduction resulting in unreduced gametes is thought to be the predominant mechanism underlying allopolyploid formation in plants. Until now, however, its genetic base was largely unknown. The allohexaploid crop common wheat (Triticum aestivum L.), which originated from hybrids of T. turgidum L. with Aegilops tauschii Cosson, provides a model to address this issue. Our observations of meiosis in pollen mother cells from T. turgidum×Ae. tauschii hybrids indicated that first division restitution, which exhibited prolonged cell division during meiosis I, was responsible for unreduced gamete formation. A major quantitative trait locus (QTL) for this trait, named QTug.sau-3B, was detected on chromosome 3B in two T. turgidum×Ae. tauschii haploid populations. This QTL is situated between markers Xgwm285 and Xcfp1012 and covered a genetic distance of 1 cM in one population. QTug.sau-3B is a haploid-dependent QTL because it was not detected in doubled haploid populations. Comparative genome analysis indicated that this QTL was close to Ttam-3B, a collinear homolog of tam in wheat. Although the relationship between QTug.sau-3B and Ttam requires further study, high frequencies of unreduced gametes may be related to reduced expression of Ttam in wheat.


Subject(s)
Quantitative Trait Loci , Triticum/genetics , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Comparative Genomic Hybridization , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Meiosis , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Polyploidy , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...