Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 179(1): 103-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34625952

ABSTRACT

BACKGROUND AND PURPOSE: In chronic kidney disease (CKD), patients inevitably reach end-stage renal disease and require renal transplant. Evidence suggests that CKD is associated with metabolite disorders. However, the molecular pathways targeted by metabolites remain enigmatic. Here, we describe roles of 1-hydroxypyrene in mediating renal fibrosis. EXPERIMENTAL APPROACH: We analysed 5406 urine and serum samples from patients with Stage 1-5 CKD using metabolomics, and 1-hydroxypyrene was identified and validated using longitudinal and drug intervention cohorts as well as 5/6 nephrectomised and adenine-induced rats. KEY RESULTS: We identified correlations between the urine and serum levels of 1-hydroxypyrene and the estimated GFR in patients with CKD onset and progression. Moreover, increased 1-hydroxypyrene levels in serum and kidney tissues correlated with decreased renal function in two rat models. Up-regulated mRNA expression of aryl hydrocarbon receptor and its target genes, including CYP1A1, CYP1A2 and CYP1B1, were observed in patients and rats with progressive CKD. Further we showed up-regulated mRNA expression of aryl hydrocarbon receptor and its three target genes, plus up-regulated nuclear aryl hydrocarbon receptor protein levels in mice and HK-2 cells treated with 1-hydroxypyrene, which caused accumulation of extracellular matrix components. Treatment with aryl hydrocarbon receptor short hairpin RNA or flavonoids inhibited mRNA expression of aryl hydrocarbon receptor and its target genes in 1-hydroxypyrene-induced HK-2 cells and mice. CONCLUSION AND IMPLICATIONS: Metabolite 1-hydroxypyrene was demonstrated to mediate renal fibrosis through activation of the aryl hydrocarbon receptor signalling pathway. Targeting aryl hydrocarbon receptor may be an alternative therapeutic strategy for CKD progression.


Subject(s)
Receptors, Aryl Hydrocarbon , Renal Insufficiency, Chronic , Animals , Cytochrome P-450 CYP1A1/genetics , Fibrosis , Humans , Mice , Pyrenes , Rats , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy
2.
Clin Chim Acta ; 491: 59-65, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30639583

ABSTRACT

Chronic kidney disease (CKD) results in high morbidity and mortality worldwide causing a huge socioeconomic burden. MicroRNA (miRNA) exert critical regulatory functions by targeting downstream genes and have been associated with many pathophysiologic processes including CKD. In fact, many studies have shown that the expression of various miRNAs was significantly changed in CKD. Current investigations have focused on revealing the relationship between miRNAs and CKD states including diabetic nephropathy, lupus nephritis, focal segmental glomerulosclerosis and IgA nephropathy. In this review, we summarize the latest advances elucidating miRNA involvement in the progression of CKD and demonstrate that miRNAs have the potential to be effective biomarkers and therapeutic targets for subsequent treatment.


Subject(s)
MicroRNAs/metabolism , Renal Insufficiency, Chronic/metabolism , Disease Progression , Humans , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...