Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Appl Opt ; 63(3): 865-873, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38294403

ABSTRACT

In this paper, a high-quality germanene-polyvinyl alcohol (PVA) saturable absorber (SA) with a modulation depth of 3.05% and a saturation intensity of 17.95M W/c m 2 was prepared. Stable conventional mode-locking and harmonic mode-locking (HML) were achieved in germanene-based Er-doped fiber lasers (EDFL) using dispersion management techniques. In a cavity with a net dispersion value of -0.22p s 2, the conventional soliton had a center wavelength of 1558.2 nm, a repetition frequency of 19.09 MHz, and a maximum 3 dB spectrum bandwidth of 3.5 nm. The highest repetition frequencies achieved in cavities with net dispersion values of -2.81p s 2, -1.73p s 2, and -1.09p s 2 were 9.48 MHz, 12.75 MHz, and 12.10 MHz for HML, respectively. Furthermore, the effects of dispersion, power, and the polarization state on HML were systematically investigated. Our research results fully demonstrate the capability of germanene as an optical modulator in generating conventional mode-locked and harmonic mode-locked solitons. This provides meaningful references for promoting its application in ultrafast fiber lasers.

2.
Appl Opt ; 62(34): 9156-9163, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108754

ABSTRACT

In this study, germanene-nanosheets (NSs) were synthesized by liquid-phase exfoliation, followed by an experimental investigation into the nonlinear saturable absorption characteristics and morphological structure of germanene. The germanene-NSs were employed as saturable absorbers, exhibiting saturation intensity and modulation depth values of 22.64M W/c m 2 and 4.48%, respectively. This demonstrated the feasibility of utilizing germanene-NSs passively mode-locked in an erbium-doped fiber laser (EDFL). By optimizing the cavity length, improvements in the output of EDFL characteristics were achieved, resulting in 883 fs pulses with a maximum average output power of 19.74 mW. The aforementioned experimental outcomes underscore the significant potential of germanene in the realms of ultrafast photonics and nonlinear optics.

3.
Opt Express ; 31(16): 26145-26155, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710482

ABSTRACT

We proposed an erbium-doped fiber laser mode-locked with a MoxW1-xTe2-based nonlinear optical modulator for the first time to our best knowledge. This fiber laser can deliver bright pulses, bright-dark pulse pairs, dark pulses, bright-dark-bright pulses, and dark-dark-bright pulses. The modulation depth and saturation intensity of the MoxW1-xTe2-based saturable absorber were about 7.8% and 8.6 MW/cm2, respectively. When 10% of the laser in the cavity was output, conventional soliton pulses with central wavelength of 1560.1 nm can be obtained in the cavity. When 70% of the laser was output, dual-wavelength domain-wall dark pulses appeared in the laser cavity. This experiment revealed that an appropriate increase in the ratio of output energy can improve the chance of dark pulses in fiber lasers. The mode-locking states in this fiber laser can evolve with each other between bright pulses, bright-dark pulse pairs and dark pulses by adjusting the polarization controller. The results indicated that the MoxW1-xTe2 can be used to make modulators for generating dark pulses. Furthermore, our work will be of great help to improve the chance of the generation of dark pulse in fiber lasers.

4.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630916

ABSTRACT

High-energy Er-doped fiber laser with high conversion efficiency is reported, which is mode-locked by a germanium telluride (GeTe)-based saturable absorber (SA). By adjusting the direction of the polarization controller (PC), a high-energy pulse with a central wavelength of 1533.1 nm and a fundamental repetition frequency of 1.58 MHz is achieved. Under the pump power of 450.1 mW, the maximum average output power is 50.48 mW, and the single-pulse energy is 32 nJ. It is worth noting that the optical-to-optical conversion efficiency has reached about 11.2%. The experimental results indicate that GeTe performs excellently as SAs for obtaining mode-locked fiber lasers and plays an extremely important role in high-energy fiber lasers.

5.
RSC Adv ; 13(29): 20031-20039, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37409028

ABSTRACT

Brominated dyes, 2C-n (n = 1-5), 3C-4 and 4C-4, were prepared through bromination of three carbazole-based D-π-A dyes, 2C, 3C and 4C with N-bromosuccinimide (NBS). The detailed structures of the brominated dyes were confirmed by 1H NMR spectroscopy and mass spectrometry (MS). The introduction of the Br atom on the 1,8-positon of carbazole moieties led to blueshifted UV-vis and photoluminescence (PL) spectra, increased initial oxidation potentials and enlarged dihedral angles, indicating bromination enhanced non-planarity of the dye molecules. In the hydrogen production experiments, with the increase of the Br content in brominated dyes, the photocatalytic activity increased continuously (except 2C-1). The dye-sensitized Pt/TiO2, 2C-4@T, 3C-4@T and 4C-4@T, exhibited high hydrogen production efficiencies of 655.4, 877.9 and 905.6 µmol h-1 g-1, respectively, which were 4-6-fold higher than those of 2C@T, 3C@T and 4C@T. The enhanced performance of photocatalytic hydrogen evolution was attributed to decreased dye aggregation resulting from the highly non-planar molecular structures of the brominated dyes.

6.
Research (Wash D C) ; 6: 0205, 2023.
Article in English | MEDLINE | ID: mdl-37521328

ABSTRACT

Infectious diseases severely threaten public health and global biosafety. In addition to transmission through the air, pathogenic microorganisms have also been detected in environmental liquid samples, such as sewage water. Conventional biochemical detection methodologies are time-consuming and cost-ineffective, and their detection limits hinder early diagnosis. In the present study, ultrafine plasmonic fiber probes with a diameter of 125 µm are fabricated for clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-12a-mediated sensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Single-stranded DNA exposed on the fiber surface is trans-cleaved by the Cas12a enzyme to release gold nanoparticles that are immobilized onto the fiber surface, causing a sharp reduction in the surface plasmon resonance (SPR) wavelength. The proposed fiber probe is virus-specific with the limit of detection of ~2,300 copies/ml, and genomic copy numbers can be reflected as shifts in wavelengths. A total of 21 sewage water samples have been examined, and the data obtained are consistent with those of quantitative polymerase chain reaction (qPCR). In addition, the Omicron variant and its mutation sites have been fast detected using S gene-specific Cas12a. This study provides an accurate and convenient approach for the real-time surveillance of microbial contamination in sewage water.

7.
Front Optoelectron ; 16(1): 13, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37284945

ABSTRACT

As a member of Xenes family, germanene has excellent nonlinear saturable absorption characteristics. In this work, we prepared germanene nanosheets by liquid phase exfoliation and measured their saturation intensity as 0.6 GW/cm2 with a modulation depth of 8%. Then, conventional solitons with a pulse width of 946 fs and high-energy noise-like pulses with a pulse width of 784 fs were obtained by using germanene nanosheet as a saturable absorber for a mode-locked Erbium-doped fiber laser. The characteristics of the two types of pulses were investigated experimentally. The results reveal that germanene has great potential for modulation devices in ultrafast lasers and can be used as a material for creation of excellent nonlinear optical devices to explore richer applications in ultrafast photonics.

8.
Opt Lett ; 48(9): 2214-2217, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126237

ABSTRACT

A dual-shearing interferometer (DSI) for multimodal hyperspectral imaging is presented. Two orthogonally stacked pairs of coherent beams are generated by a pair of novel, to the best of our knowledge, birefringent lateral shearing splitters. Consequently, two sets of interferograms with full pixel resolution are captured alternately in a time sequence in the double Nyquist frequency mode. Modals of dual-field-of-view hyperspectral imaging and differential-polarization hyperspectral imaging are introduced, and verification experiments are performed. The feasibility of other modals is discussed. The proposed method can effectively improve the instrument's performance in terms of the field of view, polarization, spectral resolution, and spectral range.

9.
Appl Opt ; 62(8): 1921-1926, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37133075

ABSTRACT

In this paper, an indium antimonide (InSb) saturable absorber (SA) was successfully fabricated. The saturable absorption properties of the InSb SA were studied, and they show a modulation depth and a saturable intensity of 5.17% and 9.23M W/c m 2, respectively. By employing the InSb SA and building the ring cavity laser structure, the bright-dark soliton operations were successfully obtained by increasing the pump power to 100.4 mW and adjusting the polarization controller. As the pump power increased from 100.4 to 180.3 mW, the average output power increased from 4.69 to 9.42 mW, the corresponding fundamental repetition rate was 2.85 MHz, and the signal-to-noise ratio was 68 dB. The experimental results show that InSb with excellent saturable absorption characteristics can be used as a SA to obtain pulse lasers. Therefore, InSb has important potential in fiber laser generation, further applications in optoelectronics, laser distance ranging, and optical fiber communication, and it can be widely developed.

10.
Opt Express ; 31(6): 10176-10190, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157571

ABSTRACT

With the advances in the field of ultrafast photonics occurring so fast, the demand for optical modulation devices with high performance and soliton lasers which can realize the evolution of multiple soliton pulses is gradually increasing. Nevertheless, saturable absorbers (SAs) with appropriate parameters and pulsed fiber lasers which can output abundant mode-locking states still need to be further explored. Due to the special band gap energy values of few-layer indium selenide (InSe) nanosheets, we have prepared a SA based on InSe on a microfiber by optical deposition. In addition, we demonstrate that our prepared SA possesses a modulation depth and saturable absorption intensity about 6.87% and 15.83 MW/cm2, respectively. Then, multiple soliton states are obtained by dispersion management techniques, including regular solitons, and second-order harmonic mode-locking solitons. Meanwhile, we have obtained multi-pulse bound state solitons. We also provide theoretical basis for the existence of these solitons. The results of the experiment show that the InSe has the potential to be an excellent optical modulator because of its excellent saturable absorption properties. This work also is important for improving the understanding and knowledge of InSe and the output performance of fiber lasers.

11.
Nanomaterials (Basel) ; 13(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36985932

ABSTRACT

Abundant research findings have proved the value of two-dimensional (2D) materials in the study of nonlinear optics in fiber lasers. However, there remains two problems: how to reduce the start-up threshold, and how to improve the damage threshold, of fiber lasers based on 2D materials. A 15.1 mW low-threshold mode-locked fiber laser, based on a Cr2Si2Te6 saturable absorber (SA) prepared by the liquid-phase exfoliation method, is demonstrated successfully in this work. This provides a useful and economical method to produce SAs with low insertion loss and low saturation intensity. Besides, multiple high-order harmonics, from the fundamental frequency (12.6 MHz) to the 49th-order harmonic (617.6 MHz), mode-locked operations are recorded. The experimental results indicate the excellent potential of Cr2Si2Te6 as an optical modulator in exploring the soliton dynamics, harmonic mode locking, and other nonlinear effects in fiber lasers.

12.
Front Oncol ; 13: 1082841, 2023.
Article in English | MEDLINE | ID: mdl-36756157

ABSTRACT

Introduction: The goal of this study was to establish an optimized metabolic panel by combining serum and urine biomarkers that could reflect the malignancy of cancer tissues to improve the non-invasive diagnosis of esophageal squamous cell cancer (ESCC). Methods: Urine and serum specimens representing the healthy and ESCC individuals, together with the paralleled ESCC cancer tissues and corresponding distant non-cancerous tissues were investigated in this study using the high-resolution 600 MHz 1H-NMR technique. Results: We identified distinct 1H NMR-based serum and urine metabolic signatures respectively, which were linked to the metabolic profiles of esophageal-cancerous tissues. Creatine and glycine in both serum and urine were selected as the optimal biofluids biomarker panel for ESCC detection, as they were the overlapping discriminative metabolites across serum, urine and cancer tissues in ESCC patients. Also, the were the major metabolites involved in the perturbation of "glycine, serine, and threonine metabolism", the significant pathway alteration associated with ESCC progression. Then a visual predictive nomogram was constructed by combining creatine and glycine in both serum and urine, which exhibited superior diagnostic efficiency (with an AUC of 0.930) than any diagnostic model constructed by a single urine or serum metabolic biomarkers. Discussion: Overall, this study highlighted that NMR-based biofluids metabolomics fingerprinting, as a non-invasive predictor, has the potential utility for ESCC detection. Further studies based on a lager number size and in combination with other omics or molecular biological approaches are needed to validate the metabolic pathway disturbances in ESCC patients.

13.
Appl Opt ; 61(13): 3884-3892, 2022 May 01.
Article in English | MEDLINE | ID: mdl-36256433

ABSTRACT

This paper reports the generation of fundamental solitons and third-order solitons in an erbium-doped fiber laser (EDFL) by a Cr2Ge2Te6-polyvinyl alcohol (CGT-PVA) saturable absorber (SA). Stable fundamental solitons at 1559.09 nm at a repetition frequency of 5.1 MHz were detected, and third-order solitons with a maximum output power of 6.807 mW and narrowest monopulse duration of 615.2 fs were obtained under a repetition frequency of 15.3 MHz by changing pump power. To the best of our knowledge, it is the first time to achieve a Q-switched pulse with a minimum pulse duration of 2.2 µs and maximum single pulse energy of 12.11 nJ in EDFL based on CGT-PVA SA after reducing the cavity length. Its repetition rate monotonically increased from 18.8 kHz to 61.8 kHz with a tuning range of about 43 kHz. The experimental results sufficiently demonstrate that CGT has enormous potential as an ultrafast photonics device.

14.
Appl Opt ; 61(11): 3254-3259, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35471305

ABSTRACT

In this work, a saturable absorber (SA) based on Cr2Si2Te6 (CST), with a modulation depth of 14.90% and saturation intensity of 4.81MW/cm2, was prepared by a liquid phase stripping method. Its nonlinear optical properties and application in obtaining mode-locked pulse output of bright-dark solitons are studied. When the pump power was 1250 mW, the maximum output power was 26.60 mW; the energy of the single pulse was 15.02 nJ, and the repetition rate was 1.77 MHz. Our results provided evidence that CST can be used as an excellent SA for a mode-locked laser and demonstrated that ferromagnetic insulators can be used for the study of bright-dark soliton pairs.

15.
Front Oncol ; 12: 833680, 2022.
Article in English | MEDLINE | ID: mdl-35372060

ABSTRACT

Background: The malignant probability of MRI BiRADS 4 breast lesions ranges from 2% to 95%, leading to unnecessary biopsies. The purpose of this study was to construct an optimal XGboost prediction model through a combination of DKI independently or jointly with other MR imaging features and clinical characterization, which was expected to reduce false positive rate of MRI BiRADS 4 masses and improve the diagnosis efficiency of breast cancer. Methods: 120 patients with 158 breast lesions were enrolled. DKI, Diffusion-weighted Imaging (DWI), Proton Magnetic Resonance Spectroscopy (1H-MRS) and Dynamic Contrast-Enhanced MRI (DCE-MRI) were performed on a 3.0-T scanner. Wilcoxon signed-rank test and χ2 test were used to compare patient's clinical characteristics, mean kurtosis (MK), mean diffusivity (MD), apparent diffusion coefficient (ADC), total choline (tCho) peak, extravascular extracellular volume fraction (Ve), flux rate constant (Kep) and volume transfer constant (Ktrans). ROC curve analysis was used to analyze the diagnostic performances of the imaging parameters. Spearman correlation analysis was performed to evaluate the associations of imaging parameters with prognostic factors and breast cancer molecular subtypes. The Least Absolute Shrinkage and Selectionator operator (lasso) and the area under the curve (AUC) of imaging parameters were used to select discriminative features for differentiating the breast benign lesions from malignant ones. Finally, an XGboost prediction model was constructed based on the discriminative features and its diagnostic efficiency was verified in BiRADS 4 masses. Results: MK derived from DKI performed better for differentiating between malignant and benign lesions than ADC, MD, tCho, Kep and Ktrans (p < 0.05). Also, MK was shown to be more strongly correlated with histological grade, Ki-67 expression and lymph node status. MD, MK, age, shape and menstrual status were selected to be the optimized feature subsets to construct an XGboost model, which exhibited superior diagnostic ability for breast cancer characterization and an improved evaluation of suspicious breast tumors in MRI BiRADS 4. Conclusions: DKI is promising for breast cancer diagnosis and prognostic factor assessment. An optimized XGboost model that included DKI, age, shape and menstrual status is effective in improving the diagnostic accuracy of BiRADS 4 masses.

16.
Nanomaterials (Basel) ; 12(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269240

ABSTRACT

A ferromagnetic insulator Cr2Ge2Te6 as a saturable absorber in an Er-doped fiber laser (EDFL) was demonstrated. In this work, a CGT-PVA composite film was successfully fabricated using the liquid-phase exfoliation method and employed in an EDFL. The modulation depth and saturation intensity of the SA are 4.26% and 89.40 MW/cm2, respectively. Stable pulses with a minimum pulse width of 978.5 fs when the repetition rate was 3.25 MHz were recorded experimentally. Furthermore, stable solitons still need to be obtained when the pulse energy in the cavity is as high as 11.6 nJ. The results fully suggest that CGT has outstanding nonlinear absorption properties, which may have broad potential applications in ultrafast photons.

17.
Appl Opt ; 61(4): 898-903, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35201058

ABSTRACT

In our work, a new-type, to the best of our knowledge, ferromagnetic insulator and its nonlinear optical absorption characteristics and related ultrafast modulation applications were investigated. Cr2Si2Te6 saturable absorbers (SAs) with a modulation depth and a saturable intensity of 9.7% and 3.5MW/cm2 were fabricated. By adjusting the pump power to 120 mW and optimizing the polarization state, traditional soliton operations were obtained successfully; the corresponding duration of pulse and the fundamental repetition rate were ∼1.33ps and 6.70 MHz, and the signal-to-noise ratio was 50 dB. The experimental results reveal that Cr2Si2Te6 with excellent saturable absorption characteristics can be used as a SA to obtain ultrafast pulse lasers.

18.
Nanomaterials (Basel) ; 12(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35159910

ABSTRACT

Large-energy mode-locked fiber lasers are extensively studied due to their indispensable use in various fields and applications. Recently, ferromagnetic insulators have attracted tremendous research interest in ultra-fast photonics because of their unique ferromagnetic properties and typical layered structure. In our work, Cr2Si2Te6 nanosheets are prepared and utilized as a saturable absorber (SA) in a large-energy mode-locked erbium-doped fiber (EDF) laser. With a total cavity length of 240 m, a stable mode-locked operation characterized by maximum pulse energy as high as 244.76 nJ with a repetition rate of 847.64 kHz is achieved. When the cavity length is extended to 390 m, the output maximum pulse energy is successfully scaled up to 325.50 nJ. To our knowledge, this is the largest pulse energy and highest output power level to be achieved in mode-locked fiber lasers by two-dimensional (2D) material saturable absorbers (SAs) so far. This work not only makes a forward step to the investigation of the generation of large-energy pulses in mode-locked fiber lasers but also fully proves that the ferromagnetic insulator-Cr2Si2Te6 possesses an excellent nonlinear absorption property, antioxidant capacity in ambient conditions, as well as outstanding thermal stability, which enriches our insight into 2D materials.

19.
Appl Opt ; 61(32): 9379-9385, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36606884

ABSTRACT

In this work, we fabricate a saturable absorber based on GeTe with saturation intensity and modulation depth of 12.6M W/c m 2 and 7%, respectively. We obtain stable conventional soliton and stretched soliton mode-locking operation. For the conventional soliton state, the average output power increased from 0.93 to 8.70 mW with the increase of pump power, and the fundamental repetition rate was 7.8351 MHz. Its central wavelength and 3 dB bandwidth were 1564.72 and 4.78 nm, respectively. For the stretched soliton state, when the pump power was increased from 87.4 to 420.3 mW, the average output power increased from 2.05 to 10.46 mW. When the maximum average output power reached 10.46 mW, the maximum average single-pulse energy was 0.86 nJ. The experimental results show that GeTe nanosheets will have broad application potential in the field of ultrafast photonics.

20.
Appl Opt ; 61(31): 9168-9177, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36607050

ABSTRACT

Investigations of optical solitons have always been a hot topic due to their important scientific research value. In recent years, ultrafast lasers based on two-dimensional materials such as saturable absorbers (SAs) have become the focus of optical soliton research. In this work, various soliton operations are demonstrated in Er-doped fiber lasers (EDFLs) based on ${{\rm Cr}_2}{{\rm Si}_2}{{\rm Te}_6}$ SAs. First, a low-threshold passively mode-locked EDFL with traditional soliton output is constructed, and the pump threshold is as low as 10.1 mW. Second, by adjusting the net dispersion of the cavity, stable dissipative soliton operation can also be obtained. Traditional soliton mode-locked operation with controllable Kelly sidebands from first order to fourth order is realized by adjusting the pump power in a double-ended pumped structure, and the SNR is as high as 55 dB. All results prove that ${{\rm Cr}_2}{{\rm Si}_2}{{\rm Te}_6}$ used as SA material has great potential and wide application prospects in investigating optical soliton operations in mode-locked fiber lasers with both normal and anomalous dispersion.

SELECTION OF CITATIONS
SEARCH DETAIL
...