Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cell Signal ; 121: 111257, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38857681

ABSTRACT

Epithelial barrier dysfunction plays an important role in the pathogenesis of Th2 bias. The mechanism requires further clarification. NEMO is associated with regulating apoptotic activities in the cell. The purpose of this study is to investigate the role of insufficient Nemo signals in developing Th2 bias in the respiratory tract. Nemof/fEpcam-Cre mice (A mouse strain carrying NEMO-deficient epithelial cells. NemoKO mice, in short) was generated. An airway Th2 bias mouse model was established with the ovalbumin/alum protocol. The NemoKO mice exhibited spontaneous airway Th2 bias. Respiratory tract epithelial barrier integrity was compromised in NemoKO mice. Apoptosis was found in approximately 10% of the epithelial cells of the respiratory tract in NemoKO mice. The reconstruction of the Nemo expression restored homeostasis within the epithelial barrier of the airways. Restoration of Nemo gene expression in epithelial cells by Nemo mRNA vaccination alleviated Th2 bias in mice with airway allergy. To sum up, NEMO plays an important role in maintaining the integrity of the epithelial barrier in the respiratory tract. Administration of NEMO mRNA vaccines can restore epithelial barrier functions and alleviate Th2 bias in the airways.

2.
Immunology ; 172(4): 588-599, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38634546

ABSTRACT

Allergic asthma is characterized by the polarization of Th2 cells and impaired immune regulation. Macrophages occupy the largest proportion of airway immune cells. This study aims to discover the mechanism that hinders the immune regulatory functions of airway macrophages. In this study, macrophages were isolated from cells in bronchoalveolar lavage fluids (BALF) collected from asthma patients and normal control (NC) subjects. The results indicated that macrophages occupied the largest portion of the cellular components in BALF. The frequency of IL-10+ macrophage was significantly lower in asthma patients than in NC subjects. The expression of IL-10 in macrophages of BALF was associated with the levels of asthma-related parameters. The immune-suppressive functions of BALF M0 cells were defective in asthma patients. The inducibility of IL-10 expression was impaired in BALF macrophages of asthma patients, which could be restored by exposing to CpG. In conclusion, the induction of IL-10 in macrophages of BALF in asthma patients was impaired, and it could be restored by exposure to CpG.


Subject(s)
Asthma , Bronchoalveolar Lavage Fluid , Interleukin-10 , Oligodeoxyribonucleotides , Humans , Asthma/immunology , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Female , Male , Interleukin-10/metabolism , Adult , Macrophages/immunology , Macrophages/metabolism , Middle Aged , Macrophages, Alveolar/immunology , Cells, Cultured , Th2 Cells/immunology
3.
Breast Cancer ; 31(4): 539-551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38630392

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly heterogeneous tumor lacking estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. It has higher aggressiveness and metastasis than other subtypes, with limited effective therapeutic strategies, leading to a poor prognosis. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway is prevalently over-activated in human cancers and contributes to breast cancer (BC) growth, survival, proliferation, and angiogenesis, which could be an interesting therapeutic target. This review summarizes the PI3K/AKT/mTOR signaling pathway activation mechanism in TNBC and discusses the relationship between its activation and various TNBC subtypes. We also report the latest clinical studies on kinase inhibitors related to this pathway for treating TNBC. Our review discusses the issues that need to be addressed in the clinical application of these inhibitors.


Subject(s)
Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Female , Phosphatidylinositol 3-Kinases/metabolism , Molecular Targeted Therapy/methods , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , MTOR Inhibitors/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
4.
Biomed Pharmacother ; 174: 116510, 2024 May.
Article in English | MEDLINE | ID: mdl-38554528

ABSTRACT

BACKGROUND: CpG oligodeoxynucleotide (CpG-ODN; CpG, in short) has been employed as an adjuvant in allergen specific immunotherapy (AIT) to treat allergic diseases. The underlying mechanism needs to be further explained. The aim of this study is to examine the mechanism by which CpG and dust mite extracts (DME, a specific antigen) alleviate experimental airway allergy. METHODS: DME was used as the specific allergen to establish an airway allergy mouse model. The mice were directly exposed to DME and CpG through nasal instillations (the CpG.DME therapy). The response of DCs and allergic responses in the airways were assessed using immunological approaches. RESULTS: The airway allergy reaction was effectively suppressed by CpG.DME therapy. The administration of CpG or DME alone did not have any significant suppressive effects on the airway allergic response. Direct exposure to CpG.DME induced type 1 DCs (DC1s) and plasmacytoid DCs (pDCs), while CpG alone induced DC1s and DME alone induced DC2s in the airway tissues. Both DC1s and pDCs were required for the induction of type 1 regulatory T cells in the airway tissues by CpG.DME therapy. Depletion of either pDCs or DC1s abolished the induction of Tr1 cells, and abolished the suppressive effects on airway allergic response by the CpG.DME therapy. CONCLUSIONS: Direct exposure to CpG.DME induces DC1s and pDCs in the airway tissues. DC1s in synergy with pDCs induce type 1 regulatory T cells. The CpG.DME therapy is effective in suppressing allergic responses in mice with airway allergy.


Subject(s)
Dendritic Cells , Mice, Inbred BALB C , Oligodeoxyribonucleotides , Respiratory Hypersensitivity , Animals , Dendritic Cells/immunology , Dendritic Cells/drug effects , Oligodeoxyribonucleotides/pharmacology , Mice , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/therapy , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Female , Adjuvants, Immunologic/pharmacology , Allergens/immunology , Antigens, Dermatophagoides/immunology , Hypersensitivity/immunology , Mice, Inbred C57BL , Disease Models, Animal , Pyroglyphidae/immunology
5.
J Asian Nat Prod Res ; 26(2): 195-203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38193216

ABSTRACT

A 1,2:3,4:9,10:9,19-tetraseco-cycloartane triterpene spiroketal lactone, pseudoamaolide P (1), two new labdane-type diterpenoids, pseudoamains A and B (2-3), and four known cembrane-type diterpenoids (4-7) were isolated from the seeds of Pseudolarix amabilis. The structures of these compounds were elucidated by spectroscopic analyses, including HRESIMS, 1D-, and 2D-NMR. The anti-inflammatory activities of the compounds were evaluated by suppressing the transcription of the NF-κB-dependent reporter gene in LPS-induced 293 T/NF-κB-luc cells. All compounds do not show potent activity.


Subject(s)
Diterpenes , Furans , Spiro Compounds , Triterpenes , Lactones/pharmacology , NF-kappa B , Triterpenes/pharmacology , Triterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Seeds , Molecular Structure
6.
Phys Chem Chem Phys ; 25(47): 32378-32386, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37997047

ABSTRACT

Defect engineering has been considered as an effective way for controlling the heat transport properties of two-dimensional materials. In this work, the effects of point vacancies and grain boundaries on the mechanical and thermal performances of SiC and GeC monolayers are investigated systematically by molecular dynamics calculations. The failure strength in SiC and GeC is decreased by introducing vacancies at room temperature, and the stress-strain relationship can be tuned significantly by different kinds of vacancies. When the grain boundary of 21.78° is applied, the maximal fracture strengths can be as large as 27.56% for SiC and 23.56% for GeC. Also, the thermal properties of the two monolayers show a remarkable dependence on the vacancies and grain boundaries. The high vacancy density in SiC and GeC can induce disordered heat flow and the C/Ge point defect is crucial for thermal conductivity regulation for the Si/GeC monolayer. More importantly, the SiC and GeC monolayers with a grain boundary of 5.09° show excellent interfacial thermal conductance. Our findings are of great importance in understanding SiC and GeC monolayers and seeking their potential applications.

7.
Chin Med ; 18(1): 125, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749560

ABSTRACT

In 2021, breast cancer accounted for a substantial proportion of cancer cases and represented the second leading cause of cancer deaths among women worldwide. Although tumor cells originate from normal cells in the human body, they possess distinct biological characteristics resulting from changes in gene structure and function of cancer cells in contrast with normal cells. These distinguishing features, known as hallmarks of cancer cells, differ from those of normal cells. The hallmarks primarily include high metabolic activity, mitochondrial dysfunction, and resistance to cell death. Current evidence suggests that the fundamental hallmarks of tumor cells affect the tissue structure, function, and metabolism of tumor cells and their internal and external environment. Therefore, these fundamental hallmarks of tumor cells enable tumor cells to proliferate, invade and avoid apoptosis. Modifying these hallmarks of tumor cells represents a new and potentially promising approach to tumor treatment. The key to breast cancer treatment lies in identifying the optimal therapeutic agent with minimal toxicity to normal cells, considering the specific types of tumor cells in patients. Some herbal medicines contain active ingredients which can precisely achieve this purpose. In this review, we introduce Ginsenoside's mechanism and research significance in achieving the therapeutic effect of breast cancer by changing the functional hallmarks of tumor cells, providing a new perspective for the potential application of Ginsenoside as a therapeutic drug for breast cancer.

9.
Cancer Med ; 12(10): 11363-11374, 2023 05.
Article in English | MEDLINE | ID: mdl-37081723

ABSTRACT

PURPOSE: Phyllodes tumors (PTs) are rare neoplasms with a certain risk of recurrence and/or metastasis. In clinical practice, there is a lack of high-quality clinical studies and unified guidelines to guide the treatment. MATERIALS AND METHODS: All malignant and recurrence/metastasis PTs were retrospectively collected, which were diagnosed from 2008 to 2022. RESULTS: A total of 82 patients were enrolled, including 69 malignant and 13 borderline tumors. 96.3% (79/82) received surgical treatment. During a median follow-up of 55.5 months, 20 patients (20/82, 24.4%) had distant metastasis (DM), while 32 (32/82, 39.0%) had local recurrence (LR). Univariate analysis showed the survival of PTs was associated with surgical methods (p < 0.001), tumor size (p = 0.026), and biological behavior (p = 0.017), but not age at diagnosis. In relapsed borderline PTs, we did not find deaths due to disease progression. Patients with DM were all malignant PTs, with disease-progression occurring within 3 years in more than 80% of patients. Among salvage treatments, the combination of antiangiogenic drugs improved the prognosis to some extent, with a significant increase in mPFS (2.77 vs. 1.53 months), but no significant statistical results were obtained (p = 0.168). Lactate dehydrogenase (LDH) was an independent predictor of the prognosis for malignant PTs (p = 0.001, HR = 1.203, 95%CI, 1.082-1.336). CONCLUSION: Borderline PTs rarely metastasize, and even if LR occurs, surgical resection can lead to long-term survival. In metastatic phyllodes tumors (MPT), systemic therapy is not effective, but antiangiogenic drugs may prolong survival. LDH is an independent prognostic factor for malignant PTs to identify high-risk tumors.


Subject(s)
Breast Neoplasms , Phyllodes Tumor , Humans , Female , Retrospective Studies , Phyllodes Tumor/surgery , Phyllodes Tumor/diagnosis , Prognosis , Neoplasm Recurrence, Local/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Biomarkers
10.
Cell Signal ; 102: 110552, 2023 02.
Article in English | MEDLINE | ID: mdl-36481410

ABSTRACT

It is well known that the T Helper (Th)2 bias plays a critical role in allergic asthma. Whereas the Th2 bias is maintained in the local tissues is uncertain. IL-33 is vital for the development of the Th2 polarization. TWIST-1 has an effect on regulating cellular functions. The aberrant activation of RAS sustains certain cellular activities. The aim of this study is to study the role of the interaction between activation of TWIST1 and RAS in inducing and maintaining Th2 polarization in allergic asthma. The epithelial cells of the airways (AEC) were isolated from the broncho-alveolar lavage fluids in patients with asthma. The mediators involved in the over-expression of IL-33 were determined by RNA sequencing. A mouse model was established to test the role of TWIST1 and RAS in developing allergic asthma. We observed a strong expression of TWIST1 in patients with allergic asthma that showed a positive correlation with asthmatic responses. TWIST1 favored the expression of the IL-33 in the AEC. Twist1-deficient AEC-carrying mice did not induce Th2 polarization in the airways. The expression TWIST1 in AECs was positively associated with RAS activation in AECs in patients with allergic asthma. The interaction between RAS and TWIST1 in AECs sustained airway allergic inflammation. Inhibition of TWIST1 or RAS prevented asthma-like inflammation in the mouse airways. In summary, the interaction between TWIST1 and RAS induces and maintains IL-33 expression in AECs to facilitate allergic inflammation in the respiratory tract. Inhibition of TWIST1 or RAS can prevent experimental allergic asthma.


Subject(s)
Asthma , Interleukin-33 , Animals , Mice , Asthma/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Inflammation/metabolism , Interleukin-33/metabolism , Interleukin-33/pharmacology , Th2 Cells/metabolism
11.
Allergy ; 78(2): 369-388, 2023 02.
Article in English | MEDLINE | ID: mdl-36420736

ABSTRACT

There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.


Subject(s)
Anaphylaxis , COVID-19 Vaccines , COVID-19 , Child , Humans , COVID-19 Vaccines/adverse effects , Post-Acute COVID-19 Syndrome , SARS-CoV-2
12.
Orphanet J Rare Dis ; 17(1): 399, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36324138

ABSTRACT

Hereditary angioedema (HAE) is a rare autosomal dominant genetic disease characterized by repetitive subcutaneous or submucosal angioedema, activation of the kinin system, and increased vascular permeability. C1-inhibitor (C1-INH) deficiency, the main mechanism of HAE pathogenesis, occurs when abnormal activation of plasma kallikrein, bradykinin, and factor XII, or mutation of genes such as SERPING1 cause quantitative or functional C1-INH defects. Although androgens are not approved for HAE treatment in many countries, they are widely used in China and Brazil to reduce the frequency and severity of HAE attacks. The long-term adverse effects of androgen treatment are concerning for both physicians and patients. Virilization, weight gain, acne, hirsutism, liver damage, headache, myalgia, hematuria, menstrual disorders, diminished libido, arterial hypertension, dyslipidemia, and anxiety/depression are commonly observed during long-term treatment with androgens. These adverse effects can affect the quality of life of HAE patients and often lead to treatment interruption, especially in women and children. In-depth studies of the pathogenesis of HAE have led to the approval of alternative treatment strategies, including plasma-derived C1 inhibitor, recombinant human C1 inhibitor, plasma Kallikrein inhibitor (ecallantide; lanadelumab), and bradykinin B2 receptor antagonist (icatibant), some of which have achieved satisfactory results with mostly non-serious side effects. Therefore, a new standard of medical care may expand possibilities for the management of HAE in emerging countries.


Subject(s)
Angioedemas, Hereditary , Child , Humans , Female , Angioedemas, Hereditary/drug therapy , Angioedemas, Hereditary/prevention & control , Androgens/therapeutic use , Plasma Kallikrein , Quality of Life , Complement C1 Inhibitor Protein/therapeutic use , Bradykinin B2 Receptor Antagonists/therapeutic use
13.
Allergy Asthma Immunol Res ; 14(6): 604-652, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36426395

ABSTRACT

In the last few decades, there has been a progressive increase in the prevalence of allergic rhinitis (AR) in China, where it now affects approximately 250 million people. AR prevention and treatment include allergen avoidance, pharmacotherapy, allergen immunotherapy (AIT), and patient education, among which AIT is the only curative intervention. AIT targets the disease etiology and may potentially modify the immune system as well as induce allergen-specific immune tolerance in patients with AR. In 2017, a team of experts from the Chinese Society of Allergy (CSA) and the Chinese Allergic Rhinitis Collaborative Research Group (C2AR2G) produced the first English version of Chinese AIT guidelines for AR. Since then, there has been considerable progress in basic research of and clinical practice for AIT, especially regarding the role of follicular regulatory T (TFR) cells in the pathogenesis of AR and the use of allergen-specific immunoglobulin E (sIgE) in nasal secretions for the diagnosis of AR. Additionally, potential biomarkers, including TFR cells, sIgG4, and sIgE, have been used to monitor the incidence and progression of AR. Moreover, there has been a novel understanding of AIT during the coronavirus disease 2019 pandemic. Hence, there was an urgent need to update the AIT guideline for AR by a team of experts from CSA and C2AR2G. This document aims to serve as professional reference material on AIT for AR treatment in China, thus improving the development of AIT across the world.

14.
Bioorg Chem ; 129: 106180, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36208500

ABSTRACT

Fifteen new triterpenoids (1-15), along with twenty known ones (16-35), were isolated from Pseudolarix amabilis. The triterpenoid structures include multiple skeleton types, such as 2,3-seco-cycloartane, 3,4-seco-cycloartane, 3,4:9,10-diseco-cycloartane, and 3,4:8,9:9,10-triseco-cycloartane, as elucidated by extensive spectroscopy (1D NMR, 2D NMR, HRESIMS, and IR) and single-crystal X-ray diffraction. The anti-inflammatory activities of compounds 1-35 were evaluated. Compounds 3, 11, 16, 24, 25, and 26 suppressed the transcription of the NF-κB-dependent reporter gene in LPS-induced 293T/NF-κB-Luc cells with IC50 values of 0.12, 0.10, 0.30, 0.09, 0.49, and 0.35 µM, respectively. In addition, compound 16 showed anti-inflammatory activity against xylene-induced ear swelling in vivo with an inhibition rate of 44.7 % (30 mg/kg). Compound 16 significantly improved the disease activity index (DAI) of ulcerative colitis at a dose of 400 mg/kg in a dextran sodium sulfate (DSS)-induced mouse model of experimental ulcerative colitis (P < 0.01).


Subject(s)
Colitis, Ulcerative , Pinaceae , Triterpenes , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NF-kappa B , Lactones , Triterpenes/chemistry , Pinaceae/chemistry , Anti-Inflammatory Agents/adverse effects , Seeds
15.
Oxid Med Cell Longev ; 2022: 5397733, 2022.
Article in English | MEDLINE | ID: mdl-35047106

ABSTRACT

The infection of coronavirus disease (COVID-19) seriously threatens human life. It is urgent to generate effective and safe specific antibodies (Abs) against the pathogenic elements of COVID-19. Mice were immunized with SARS-CoV-2 spike protein antigens: S ectodomain-1 (CoV, in short) mixed in Alum adjuvant for 2 times and boosted with CoV weekly for 6 times. A portion of mice were treated with Maotai liquor (MTL, in short) or/and heat stress (HS) together with CoV boosting. We observed that the anti-CoV Ab was successfully induced in mice that received the CoV/Alum immunization for 2 times. However, upon boosting with CoV, the CoV Ab production diminished progressively; spleen CoV Ab-producing plasma cell counts reduced, in which substantial CoV-specific Ab-producing plasma cells (sPC) were apoptotic. Apparent oxidative stress signs were observed in sPCs; the results were reproduced by exposing sPCs to CoV in the culture. The presence of MTL or/and HS prevented the CoV-induced oxidative stress in sPCs and promoted and stabilized the CoV Ab production in mice in re-exposure to CoV. In summary, CoV/Alum immunization can successfully induce CoV Ab production in mice that declines upon reexposure to CoV. Concurrent administration of MTL/HS stabilizes and promotes the CoV Ab production in mice.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Apoptosis , COVID-19/immunology , Plasma Cells/immunology , SARS-CoV-2/physiology , Superoxide Dismutase-1/physiology , Adjuvants, Immunologic , Alcoholic Beverages , Alum Compounds , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/enzymology , COVID-19 Vaccines/immunology , Heat-Shock Response , Immunization, Secondary , Immunogenicity, Vaccine , Janus Kinase 2/physiology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Plasma Cells/drug effects , Plasma Cells/pathology , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/physiology , Signal Transduction , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/immunology , Vaccination
17.
Front Med (Lausanne) ; 8: 645356, 2021.
Article in English | MEDLINE | ID: mdl-34422846

ABSTRACT

Background: Many studies have demonstrated the efficacy of single-allergen sublingual immunotherapy (SLIT) in polysensitized patients with allergic rhinitis (AR), but less is reported in polysensitized patients with allergic asthma (AS). Method: Data of 133 adult patients with house dust mite (HDM)-induced AS who had been treated for 3 years were collected. These patients were divided into the control group (treated with low to moderate dose of inhaled glucocorticoids and long-acting ß2 agonists, n = 37) and the SLIT group (further treated with Dermatophagoides farinae drops, n = 96). The SLIT group contained three subgroups: the single-allergen group (only sensitized to HDM, n = 35), the 1- to 2-allergen group (HDM combined with one to two other allergens, n = 32), and the 3-or-more-allergen group (HDM combined with three or more other allergens, n = 29). The total asthma symptom score (TASS), total asthma medicine score (TAMS), and asthma control test (ACT) were assessed before treatment and at yearly visits. Forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) was assessed before treatment and at the end of SLIT. Results: TASS and ACT scores in the control group were significantly higher than that in the single-allergen group and the 1- to 2-allergen group after 1, 2, and 3 years of SLIT and significantly higher than that in the 3-or-more-allergen group after 3-year SLIT (all p < 0.05). TAMS of the control group was significantly higher than that of the other three groups after 0.5, 1, 2, and 3 years of SLIT (all p < 0.05). FEV1/FVC in the control group was significantly higher than baseline after 3 years of immunotherapy (p < 0.05). Conclusion: Patients sensitized to HDM with/without other allergens showed similar efficacy after 3 years of SLIT. However, the initial response of patients with three or more allergens was slower during immunotherapy process.

19.
Eur J Immunol ; 51(7): 1748-1761, 2021 07.
Article in English | MEDLINE | ID: mdl-33811758

ABSTRACT

Treg are known to have a central role in orchestrating immune responses, but less is known about the destiny of Treg after being activated by specific Ags. This study aimed to investigate the role of superoxide dismutase, an active molecule in the regulation of oxidative stress in the body, in the prevention of Treg apoptosis induced by specific Ags. Ag-specific Tregs were isolated from the DO11.10 mouse intestine. A food allergy mouse model was developed with ovalbumin as the specific Ag and here, we observed that exposure to specific Ag induced Treg apoptosis through converting the precursor of TGF-ß to its mature form inside the Tregs. Oxidative stress was induced in Tregs upon exposure to specific Ags, in which Smad3 bound the latency-associated peptide to induce its degradation, converting the TGF-ß precursor to its mature form, TGF-ß. Suppressing oxidative stress in Tregs alleviated the specific Ag-induced Treg apoptosis in in vitro experiments and suppressed experimental food allergy by preventing the specific Ag-induced Treg apoptosis in the intestine. In conclusion, exposure to specific Ags induces Treg apoptosis and it can be prevented by upregulating superoxide dismutase or suppressing reactive oxidative species in Tregs.


Subject(s)
Antigens/immunology , Apoptosis/immunology , Oxidative Stress/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Smad3 Protein/immunology , Superoxide Dismutase/immunology , Transforming Growth Factor beta/immunology , Up-Regulation/immunology
20.
Allergy ; 75(5): 1205-1216, 2020 05.
Article in English | MEDLINE | ID: mdl-31846514

ABSTRACT

BACKGROUND: Skewed T helper (Th)2 response plays a crucial role in the pathogenesis of allergic diseases. The therapeutic efficacy for allergic diseases is unsatisfactory currently. This study aims to regulate the skewed Th2 response with CARsomes. METHODS: The CARsome consisted of an epitope of Dermatophagoides farina-1 (Derf1), a segment of the anti-DEC205 antibody, the scFv, and an open reading frame of perforin. This fusion protein binds to DEC205 molecule on the surface of exosomes derived from dendritic cells (DC). The effects of CARsome on inducing antigen (Ag)-specific Th2 cell apoptosis were assessed both in vivo and in vitro. RESULTS: Exposure to CARsomes in the culture induced Ag-specific Th2 cell apoptosis. Injection of CARsomes through the vein puncture also induced Ag-specific Th2 cell apoptosis in the lungs of sensitized mice. CARsomes could induce Ag-specific regulatory T cells. Administration of CARsomes efficiently inhibited experimental allergic airway inflammation. CONCLUSIONS: The CARsomes can inhibit allergic airway inflammation by inducing Ag-specific Th2 cell apoptosis and induce Ag-specific regulatory T cells. The data suggest that CARsomes have the translational potential to be used to treat allergic airway inflammation.


Subject(s)
Asthma , Th2 Cells , Animals , Antigens , Apoptosis , Dendritic Cells , Inflammation , Mice , Mice, Inbred BALB C , Ovalbumin
SELECTION OF CITATIONS
SEARCH DETAIL
...