Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200278, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954781

ABSTRACT

BACKGROUND AND OBJECTIVES: Neutrophils, underestimated in multiple sclerosis (MS), are gaining increased attention for their significant functions in patients with MS and the experimental autoimmune encephalomyelitis (EAE) animal model. However, the precise role of neutrophils in cervical lymph nodes (CLNs), the primary CNS-draining lymph nodes where the autoimmune response is initiated during the progression of EAE, remains poorly understood. METHODS: Applying single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive immune cell atlas of CLNs during development of EAE. Through this atlas, we concentrated on and uncovered the transcriptional landscape, phenotypic and functional heterogeneity of neutrophils, and their crosstalk with immune cells within CLNs in the neuroinflammatory processes in EAE. RESULTS: Notably, we observed a substantial increase in the neutrophil population in EAE mice, with a particular emphasis on the significant rise within the CLNs. Neutrophils in CLNs were categorized into 3 subtypes, and we explored the specific roles and developmental trajectories of each distinct neutrophil subtype. Neutrophils were found to engage in extensive interactions with other immune cells, playing crucial roles in T-cell activation. Moreover, our findings highlighted the strong migratory ability of neutrophils to CLNs, partly regulated by triggering the receptor expressed on myeloid cells 1 (TREM-1). Inhibiting TREM1 with LR12 prevents neutrophil migration both in vivo and in vitro. In addition, in patients with MS, we confirmed an increase in peripheral neutrophils with an upregulation of TREM-1. DISCUSSION: Our research provides a comprehensive and precise single-cell atlas of CLNs in EAE, highlighting the role of neutrophils in regulating the periphery immune response. In addition, TREM-1 emerged as an essential regulator of neutrophil migration to CLNs, holding promise as a potential therapeutic target in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Neutrophils , Single-Cell Analysis , Triggering Receptor Expressed on Myeloid Cells-1 , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Neutrophils/metabolism , Neutrophils/immunology , Animals , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Mice , Female , Sequence Analysis, RNA , Lymph Nodes/metabolism
2.
Environ Sci Pollut Res Int ; 31(29): 41824-41843, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862798

ABSTRACT

Ammonia nitrogen (NH3-N/NH4+-N) serves as a crucial chemical in biochemistry and fertilizer synthesis. However, it is also a toxic compound, posing risks from eutrophication to direct threats to human health. Ammonia nitrogen pollution pervades water sources, presenting a significant challenge. While several water treatment technologies exist, biological treatment, though widely used, has its limitations. Hence, green and efficient photocatalytic technology emerges as a promising solution. However, current monolithic semiconductor photocatalysts prove inadequate in controlling ammonia nitrogen pollution. Therefore, this review focuses on enhancing semiconductor photocatalysts' efficiency through modification, discussing four mechanisms: (1) mono-ionic modification; (2) metallic and non-metallic modification; (3) construct heterojunctions; and (4) enhancement of synergistic effects of multiple technologies. The influencing factors of photocatalytic ammonia nitrogen removal efficiency are also explored. Moreover, the review outlines the limitations of current photocatalytic pollution treatment and discusses future development trends and research challenges. Currently, the main products of ammonia nitrogen removal include NO3-, NO2-, and N2. To mitigate secondary pollution, the green process of converting ammonia nitrogen to N2 using photocatalysis emerges as a fundamental approach for future treatment. Overall, this review aims to deepen understanding of photocatalysis in ammonia nitrogen treatment and guide researchers toward widespread implementation of this endeavor.


Subject(s)
Ammonia , Nitrogen , Water Purification , Ammonia/chemistry , Catalysis , Water Purification/methods , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry
3.
Int J Biol Macromol ; 273(Pt 1): 133096, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866267

ABSTRACT

Copper ions in wastewater pose a significant threat to human and ecological safety. Therefore, preparing macroscopic adsorbents with reusable and high adsorption performance is paramount. This paper used graphene oxide as the adsorbent and chitosan as the thickener. Additionally, a silane coupling agent was employed to enhance the acid resistance of chitosan, and amino-modification of graphene oxide was performed. Macroscopic adsorbents with high adsorption capacity were fabricated using 3D printing technology. The results show that all five proportions of inks exhibit good printability. Dissolution experiments revealed that all materials maintained structural integrity after 180 days across pH values. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) confirmed the successful preparation of the materials. Adsorption experiments showed that the best performing material ratio was 8 wt% graphene oxide and 7 wt% chitosan. Adsorption kinetics and isothermal adsorption experiments demonstrated that the adsorption process occurred via monolayer chemisorption. The adsorption process was attributed to strong electrostatic forces, van der Waals forces, and nitrogen/oxygen-containing functional group coordination. Cycling experiments showed that the material retained good adsorption performance after 6 cycles, suggesting its potential for practical heavy metal treatment applications.


Subject(s)
Chitosan , Copper , Graphite , Chitosan/chemistry , Graphite/chemistry , Copper/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Wastewater/chemistry , Cross-Linking Reagents/chemistry , Spectroscopy, Fourier Transform Infrared , Photoelectron Spectroscopy
4.
Water Sci Technol ; 89(7): 1630-1646, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619894

ABSTRACT

Due to the colloidal stability, the high compressibility and the high hydration of extracellular polymeric substances (EPS), it is difficult to efficiently dehydrate sludge. In order to enhance sludge dewatering, the process of ultrasonic (US) cracking, chitosan (CTS) re-flocculation and sludge-based biochar (SBB) skeleton adsorption of water-holding substances to regulate sludge dewaterability was proposed. Based on the response surface method, the prediction model of the specific resistance to filtration (SRF) and sludge cake moisture content (MC) was established. The US cracking time and the dosage of CTS and SBB were optimized. The results showed that the optimal parameters of the three were 5.08 s, 10.1 mg/g dry solids (DS) and 0.477 g/g DS, respectively. Meantime, the SRF and MC were 5.4125 × 1011 m/kg and 76.8123%, which significantly improved the sludge dewaterability. According to the variance analysis, it is found that the fitting degree of SRF and MC model is good, which also confirms that there is significant interaction and synergy between US, CTS and SBB, and the contribution of CTS and SBB is greater. Moreover, the process significantly improves the sludge's calorific value and makes its combustion more durable.


Subject(s)
Chitosan , Sewage , Ultrasonics , Charcoal , Filtration , Water , Waste Disposal, Fluid/methods
5.
Mol Neurobiol ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451436

ABSTRACT

Interferon regulatory factor 5 (IRF5) is a critical transcription factor in the toll-like receptor signaling pathway. It is associated with autoimmune disorders, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease. However, the relationship between the functional single nucleotide polymorphisms (SNPs) of IRF5 and its mRNA expression level in patients with neuromyelitis optica spectrum disorder remains unclear. The present study aimed to investigate the relationship between polymorphisms and mRNA expression levels of the IRF5 gene with the incidence of neuromyelitis optica spectrum disorder (NMOSD) in northern Chinese Han people. Two loci of the IRF5 gene (rs2004640 and rs2280714) of 164 patients with NMOSD and 269 healthy subjects were genotyped using the multiple SNaPshot technique. The frequencies of alleles, genotypes, and haplotypes were compared. Stratified analysis was performed according to age, sex, AQP4 status, onset age, and Expanded Disability Status Scale (EDSS) score. The IRF5 mRNA levels in peripheral blood mononuclear cells (PBMCs) of 64 NMOSD patients (32 patients in the acute stage and 32 patients in the remission stage) and 35 healthy subjects were detected by real-time PCR. The association of SNP polymorphisms with the mRNA expression level was determined by nonparametric tests. Allele and genotype frequency distributions of rs2004640 showed significant differences between both groups. Compared to healthy controls, the frequency of rs2004640 T allele markedly increased in patients (OR = 1.51, 95% CI = 1.09-2.08, P = 0.005). Minor allele T and GT genotype of rs2004640 that significantly increases the risk of NMOSD were discovered using genetic inheritance models (codominant, dominant, and overdominant) and haplotype analyses. Subsequent haplotype analyses revealed that the major haplotype "T-A" containing the risk alleles (the SNP sequence of the alleles was rs2004640 and rs2280714) had adverse effects on NMOSD. Based on the stratification analysis according to the EDSS score, the GT genotype frequency in the EDSS ≥ 4 group (38.2%) was markedly lower than that in the EDSS < 4 group (61.8%) (OR = 0.32, 95% CI = 0.15-0.68, P = 0.0054), with a significant difference. The IRF5 mRNA expression level was increased in NMOSD patients compared to that in normal subjects. IRF5 gene polymorphisms may be tightly associated with the genesis and progression of NMOSD in northern Chinese Han people. IRF5 mRNA expression was increased in patients with NMOSD and significantly increased in patients with acute phase. Perhaps IRF5 expression levels can be used as a predictor of disease activity in the future.

6.
Sci Total Environ ; 913: 169694, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160842

ABSTRACT

In contrast to nitrification-denitrification microorganisms that convert ammonia nitrogen in hypersaline wastewater into nitrogen for discharge, this research utilizes sludge enriched with salt-tolerant assimilation bacteria (STAB) to assimilate organic matter and ammonia nitrogen in hypersaline wastewater into ectoine - a biomass with high economic value and resistance to external osmotic pressure. The study investigates the relationship between the synthesis of ectoine and nitrogen removal efficiency of STAB sludge in three sequencing batch reactors (SBR) operated at different salinities (50, 75, and 100 g/L) and organic matter concentrations. The research reveals that, under low concentration carbon sources (TOC/N = 4, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of SBR reactors increased by 14.51 % and 17.25 % within 5 d and 2 d, respectively, when salinity increased from 50 g/L to 75 g/L and 100 g/L. Under high concentration carbon sources (TOC/N = 8, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of STAB sludge in the three reactors stabilized at 80.20 %, 76.71 %, and 72.87 %, and the total nitrogen removal efficiency was finally stabilized at 80.47 %, 73.15 %, and 65.53 %, respectively. The nitrogen removal performance by ammonium-assimilating of STAB sludge is more sustainable under low salinity, while it is more short-term explosive under high salinity. Moreover, the intracellular ectoine concentration of STAB sludge was found to be related to this behavior. Empirical formulas confirm that STAB sludge synthesizes ectoine from nutrients in wastewater through assimilation, and intracellular ectoine has a threshold defect (150 mg/gVss). The ectoine metabolism pathways of STAB sludge was constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The ammonia nitrogen in sewage is converted into glutamic acid under the action of assimilation genes. It then undergoes a tricarboxylic acid cycle to synthesize the crucial precursor of ectoine - aspartic acid. Subsequently, ectoine is produced through ectoine synthase. The findings suggest that when the synthesis of intracellular ectoine reaches saturation, it inhibits the continuous nitrogen removal performance of STAB sludge under high salinity. STAB sludge does not actively release ectoine through channels under stable external osmotic pressure.


Subject(s)
Amino Acids, Diamino , Sewage , Wastewater , Sewage/microbiology , Ammonia/metabolism , Nitrification , Nitrogen/analysis , Bacteria/metabolism , Carbon , Bioreactors/microbiology , Denitrification
7.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6051-6057, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114211

ABSTRACT

HSP90 is a widely distributed molecular chaperone that participates in a variety of cellular processes and plays an important role in the meiosis of germ cells. However, its role in the gonadal development of hermaphroditic Whitmania pigra is not yet clear. To explore the effect of HSP90 on the germ cell development of Wh. Pigra, this study cloned the wpHSP90 gene, performed bioinformatics analysis, and measured its expression levels. The results showed that the cloned wpHSP90 was 2 592 bp in length, with an open reading frame(ORF) of 2 373 bp, encoding 790 amino acids. Prediction analysis revealed 85 phosphorylation modification sites on serine, threonine, and tyrosine residues of the wpHSP90 protein. Structural domain prediction and multiple sequence alignment results showed that wpHSP90 contained two conserved domains of HSP90 and exhibited the highest homology with Helobdella robusta, with a sequence similarity of 80.72%. RT-qPCR results showed that the relative expression level of wpHSP90 in the gonads of 5-month-old Wh. pigra was positively correlated with temperature within the range of 12 ℃ to 28 ℃. The expression level in the female gonads was significantly higher than in the male gonads and correlated with the trend of germ cell development in the ovaries and testes. In conclusion, wpHSP90 may be involved in regulating the development of germ cells, particularly oocytes, in Wh. pigra. This study provides a reference for further research on the gonadal development mechanism in Wh. pigra.


Subject(s)
Leeches , Ovary , Animals , Female , Male , Temperature , Gonads , Testis , Cloning, Molecular
8.
Poult Sci ; 102(10): 102965, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562135

ABSTRACT

Interleukin-9 receptor alpha chain (IL-9Rα) is the ligand-binding subunit of IL-9R that plays roles in IL-9-mediated allergy, inflammation, infection, and tumor immunity. While mammalian IL-9Rαs have been extensively investigated, avian IL-9Rα has not yet been identified and characterized. In this study, we cloned chicken IL-9Rα (chIL-9Rα) and performed a phylogenetic analysis, analyzed its tissue distribution, characterized the expression form of natural chIL-9Rα. Phylogenetic analysis showed that chIL-9Rα has less than 25% amino acid homology with mammalian IL-9Rαs. The chIL-9Rα mRNA was abundantly detected only in heart and mitogen-activated peripheral blood mononuclear cells. Furthermore, 4 monoclonal antibodies (mAbs) against chIL-9Rα were generated using prokaryotic recombinant chIL-9Rα (rchIL-9Rα). Using anti-chIL-9Rα mAbs, natural chIL-9Rα expressed on the splenocytes of chickens was observed by indirect immunofluorescence assay (IFA), and its molecular weight of 51 kDa was identified by Western blotting. Overall, our study reveals for the first time the presence of IL-9Rα in birds, and provides immunological tools for further investigating the roles of chIL-9 in diseases and immunity.


Subject(s)
Chickens , Leukocytes, Mononuclear , Animals , Chickens/genetics , Receptors, Interleukin-9/genetics , Phylogeny , Antibodies, Monoclonal , Interleukin-2 , Mammals
9.
Bioresour Technol ; 376: 128907, 2023 May.
Article in English | MEDLINE | ID: mdl-36933574

ABSTRACT

Heterotrophic nitrification and aerobic denitrification (HNAD) sludge were successfully acclimated. The effects of organics and dissolved oxygen (DO) on nitrogen and phosphorus removal by the HNAD sludge were investigated. The nitrogen can be heterotrophically nitrified and denitrified in the sludge at a DO of 6 mg/L. The TOC/N (total organic carbon to nitrogen) ratio of 3 was found to result in removal efficiencies of over 88% for nitrogen and 99% for phosphorus. The use of demand-driven aeration with a TOC/N ratio of 1.7 improved nitrogen and phosphorus removal from 35.68% and 48.17% to 68% and 93%, respectively. The kinetics analysis generated an empirical formula, Ammonia oxidation rate = 0.08917·(TOC·Ammonia)0.329·Biomass0.342. The nitrogen, carbon, glycogen, and poly-ß-hydroxybutyric acid (PHB) metabolism pathways of HNAD sludge were constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The findings suggest that heterotrophic nitrification precedes aerobic denitrification, glycogen synthesis, and PHB synthesis.


Subject(s)
Nitrification , Sewage , Denitrification , Wastewater , Ammonia/analysis , Bioreactors , Nitrogen/metabolism , Oxygen/analysis , Heterotrophic Processes , Phosphorus/metabolism , Carbon , Glycogen/metabolism , Hydroxybutyrates
10.
Membranes (Basel) ; 12(6)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35736341

ABSTRACT

Short-chain chlorinated paraffins (SCCPs) were defined as persistent organic pollutants in 2017, and they can migrate and transform in the environment, accumulate in organisms, and amplify through the food chain. Although they pose a serious threat to environmental safety and human health, there are few papers on their removal. The current SCCP removal methods are expensive, require severe operating conditions, involve time-consuming biological treatment, and have poor removal specificities. Therefore, it is important to seek efficient methods to remove SCCPs. In this paper, a pressurized reactor was introduced, and the removal performance of SCCPs by Escherichia coli strain 2 was investigated. The results indicated that moderate pure oxygen pressurization promoted bacterial growth, but when it exceeded 0.15 MPa, the bacterial growth was severely inhibited. When the concentration of SCCPs was 20 mg/L, the removal rate of SCCPs was 85.61% under 0.15 MPa pure oxygen pressurization for 7 days, which was 25% higher than at atmospheric pressure (68.83%). In contrast, the removal rate was only 69.28% under 0.15 MPa air pressure. As the pressure continued to increase, the removal rate of SCCPs decreased significantly. The total amount of extracellular polymeric substances (EPS) increased significantly upon increasing the pressure, and the amount of tightly bound EPS (TB-EPS) was higher than that of loosely bound EPS (LB-EPS). The pressure mainly promoted the secretion of proteins in LB-EPS. Furthermore, an appropriate pure oxygen pressure of 0.15 MPa improved the dehydrogenase activity. The gas chromatography-mass spectrometry (GC-MS) results indicated that the degradation pathway possibly involved the cleavage of the C-Cl bond in SCCPs, which produced Cl-, followed by C-C bond breaking. This process degraded long-chain alkanes into short-chain alkanes. Moreover, the main degradation products detected were 2,4-dimethylheptane (C9H20), 2,5-dimethylheptane (C9H20), and 3,3-dimethylhexane (C8H18).

11.
J Environ Manage ; 318: 115505, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35753132

ABSTRACT

Sponge iron is a potential material for nitrogen removal, but lack of a study about nitrogen removal in a membrane bioreactor (MBR) coupled with sponge iron. The performances and mechanisms of nitrogen removal of SI-MBR were investigated and compared it with that in GAC-MBR. The results showed that the average rate of organic matter removal in the SI-MBR was 92.74%, which was higher than that in the GAC-MBR (87.48%). And the average effluent NO2--N and NO3--N concentration in the SI-MBR (0.02 mg/L and 3.73 mg/L) was lower than that in the GAC-MBR (0.05 mg/L and 7.51 mg/L). Meanwhile, the highest nitrification rate and denitrification rate was respectively 3.544 ± 0.25 mg/(g VSS·h) and 6.643 ± 0.2 mg/(g VSS·h) in the SI-MBR, which was higher than that (3.094 ± 0.25 mg/(g VSS·h) and (6.376 ± 0.2 mg/(g VSS·h)) in the GAC-MBR. Additionally, the bacterial activities (e.g., DHA activity and respiratory activity) were obviously enhanced through the iron ion from sponge iron. The bacterial community in the SI-MBR system was more richness and diverse than that in the GAC-MBR. Ultimately, the mechanisms of enhanced biological nitrogen removal with sponge iron in MBR were analyzed. On the surface of sponge iron, the DIRB and FOB could use the iron ion from sponge iron as the electron transfer to improve the nitrogen and organic removal. With sponge iron, there is not only the nitrification bacteria and heterotrophic denitrifying microorganism enriched, but also the autotrophic denitrifying bacteria abounded obviously. The autotrophic denitrifying bacteria could use Fe(II) as an electron donor to achieve denitrification and enhance the nitrogen removal.


Subject(s)
Denitrification , Nitrogen , Bacteria , Bioreactors/microbiology , Iron , Nitrification
12.
Sci Total Environ ; 839: 156318, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35636551

ABSTRACT

The occurrence of microplastics (MPs, <5 mm) in drinking water has aroused extensive concerns, whereas our understanding of their presence in groundwater, a major source of drinking water, is still limited. The present study investigated the occurrence of microplastics in groundwater sampled from five sites in Jiaodong Peninsula, China. The abundance, type, and size of MPs in the groundwater samples were determined by Laser Direct Infrared following a well-established and quality-controlled analytical route. Notably, MPs were detected in groundwater across all five sampling sites, with high abundances ranging from 87 to 6832 particles/L and an average abundance of 2103 particles/L. The variation of the abundance of MPs was correlated to the distances between sampling sites and anthropogenic activities, which suggested significant impacts of aboveground industry and agriculture on the abundance of MPs in groundwater. Polyethylene terephthalate (PET) and polyurethane (PU) were the dominant polymer types detected in all groundwater samples. The MPs with a size smaller than 100 µm were found to account for >90% of the total MPs detected in four sampling sites, which was likely associated with their migratory routes through surface water runoff and infiltration into the groundwater settings. The results of this study suggest the importance of counting small MPs when determining their abundances in groundwater or their abundances would be considerably underestimated. The present study for the first time demonstrated the occurrence of MPs in groundwater in China, which improves our understanding of the MPs distribution and raises concerns about groundwater safety in terms of MPs pollution.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , China , Environmental Monitoring/methods , Microplastics , Plastics , Water Pollutants, Chemical/analysis
13.
Membranes (Basel) ; 12(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35207059

ABSTRACT

Aiming at the problem of highly toxic Nitrogenous disinfection by-products (N-DBPs) produced by disinfection in the process of drinking water, two-point influent activated carbon-quartz sand biofilter, activated carbon-quartz sand biofilter, and quartz sand biofilter are selected. This study takes typical N-DBPs Dichloroacetonitrile (DCAN) as the research object and aromatic amino acid Tyrosine (Tyr), an important precursor of DCAN, as the model precursor. By measuring the changes of conventional pollutants in different biofilters, and the changes of Tyr, the output DCAN formation potential of the biofilters, this article investigates the control of DCAN generation of the two-point influent activated carbon-quartz sand biofilter. The results show that the average Tyr removal rate of the three biofilters during steady operation is 73%, 50%, and 20%, respectively, while the average effluent DCAN generation potential removal rate is 78%, 52%, and 23%, respectively. The two-point influent activated carbon-sand biofilter features the highest removal rate. The two-point water intake improves the hypoxia problem of the lower filter material of the activated carbon-quartz sand biofilter, and at the same time, the soluble microbial products produced by microbial metabolism can be reduced by an appropriate carbon sand ratio, which is better than traditional quartz sand filters and activated carbon-quartz sand biofilters in the performance of controlling the precursors of N-DBPs.

14.
CNS Neurosci Ther ; 28(3): 422-434, 2022 03.
Article in English | MEDLINE | ID: mdl-34985189

ABSTRACT

AIMS: Multiple sclerosis (MS) still maintains increasing prevalence and poor prognosis, while glucagon-like peptide-1 receptor (GLP-1R) agonists show excellent neuroprotective capacities recently. Thus, we aim to evaluate whether the GLP-1R agonist liraglutide (Lira) could ameliorate central nervous system demyelination and inflammation. METHODS: The therapeutic effect of Lira was tested on experimental autoimmune encephalitis (EAE) in vivo and a microglia cell line BV2 in vitro. RESULTS: Lira administration could ameliorate the disease score of EAE mice, delay the disease onset, ameliorate pathological demyelination and inflammation score in lumbar spinal cord, reduce pathogenic T helper cell transcription in spleen, restore phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) level, autophagy level, and inhibit pyroptosis-related NLR family, pyrin domain-containing protein 3 (NLRP3) pathway in lumbar spinal cord. Additionally, cell viability test, lactate dehydrogenase release test, and dead/live cell staining test for BV2 cells showed Lira could not salvage BV2 from nigericin-induced pyroptosis significantly. CONCLUSION: Lira has anti-inflammation and anti-demyelination effect on EAE mice, and the protective effect of Lira in the EAE model may be related to regulation of pAMPK pathway, autophagy, and NLRP3 pathway. However, Lira treatment cannot significantly inhibit pyroptosis of BV2 cells in vitro. Our study provides Lira as a potential candidate for Multiple Sclerosis treatment.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , AMP-Activated Protein Kinases , Animals , Demyelinating Diseases/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology
15.
Heliyon ; 8(12): e12446, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36593850

ABSTRACT

Tumor necrosis factor alpha (TNF-α) is an important proinflammatory cytokine and the only known cytokine that can directly kill tumor cells. Unlike mammalian counterparts, chicken TNF-α (chTNF-α) gene has not been identified until very recently due to its high GC content (∼70%) and long GC fragments. The biological functions of this newly-identified cytokine and its detection methods remain to be further investigated. In this study, the extracellular domain of chTNF-α was cloned into prokaryotic vector after codon optimization and recombinant chTNF-α protein was expressed. Subsequently, using recombinant chTNF-ɑ as immunogen, rabbit polyclonal antibody (pAb) and eight clones of mouse anti-chTNF-ɑ monoclonal antibodies (mAbs) were produced, respectively. Both the pAb and mAbs specifically recognized recombinant chTNF-ɑ expressed in E.coli and transfected COS-7 cells. Further mapping the antigenic region showed that all the mAbs recognized a region of amino acid residues 195-285 of chTNF-ɑ. Furthermore, an antigen-capture enzyme-linked immunosorbent assay for the detection of chTNF-ɑ was established using one mAb and the pAb. This assay showed no cross-reactivity with irrelevant Trx-fused antigens and could detect natural chTNF-ɑ expressed by mitogen-activated chicken splenocytes in a dose-dependent manner, with a detection limit of 1 ng/mL. Collectively, our results indicated that the mAbs and pAb against chTNF-α are specific and could be used for the study of the biological functions of chTNF-ɑ and the detection of chTNF-ɑ.

16.
Vet Med Sci ; 7(6): 2339-2347, 2021 11.
Article in English | MEDLINE | ID: mdl-34535963

ABSTRACT

BACKGROUND: Clostridium perfringens is an important zoonotic microorganism, which can cause diseases in animals and humans under suitable conditions. Contamination of C. perfringens in chicken products has been reported worldwide, but the genetic diversity and relationship of isolates were seldom analyzed. OBJECTIVES: The current study was undertaken to investigate the prevalence of C. perfringens from retail chicken products and sick chickens with suspected necrotic enteritis (NE) in Tai'an area, China. METHODS: In total, 295 samples were collected from Tai'an large poultry retail market and veterinary hospital in 2018, then the isolates were tested for toxin genes, drug resistance and multilocus sequence typing (MLST). RESULTS: Overall, 138 (46.78%) samples were determined to be positive for C. perfringens, and 99.37% of the isolates were identified as C. perfringens type A, with the remaining isolates being type F; 18.99% of the isolates were positive for cpb2 gene. Antimicrobial susceptibility testing revealed that 52.27% of the isolates from poultry retail market and diseased chickens showed multiple antibiotic resistance. MLST results showed that 50 analyzed isolates can be divided into 39 sequences types (STs), clustered in three clonal complexes (CCs) and 23 singletons. Although most of the isolates belong to type A, considerable genetic diversity can be observed, with the Simpson's diversity index up to 0.9181. MLST results and phylogenetic analysis showed that a portion of the isolates from humans and chickens were assigned to the same clusters in the phylogenetic tree or found to be in the same CCs, indicating the chicken isolates and the human isolates are related in certain stratification. CONCLUSIONS: This study showed that the contamination rate of C. perfringens in the local retail chicken products was relatively high. Most of the isolates exhibit broad-spectrum antimicrobial resistance. The high antibiotic resistance of C. perfringens isolates and the relationship between isolates from human and chicken indicated potential public health risks.


Subject(s)
Clostridium Infections , Clostridium perfringens , Animals , Chickens/genetics , China/epidemiology , Clostridium Infections/epidemiology , Clostridium Infections/veterinary , Clostridium perfringens/genetics , Multilocus Sequence Typing/veterinary , Phylogeny , Prevalence
17.
Sci Total Environ ; 801: 149569, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34416609

ABSTRACT

A simultaneous nitrification-denitrification and phosphorus removal (SNDPR) system operated in an alternating anaerobic/aerobic/anoxic (A/O/A) mode was revisited from new perspectives of sludge reduction and potential phosphorus recovery. Reliable and robust removal performance was obtained even under winter temperatures, with average removal efficiency of COD, TP, NH4+-N and TIN being 89.68%, 93.60%, 92.15% and 79.01% at steady state, respectively. Inoculated sludge got enhanced in biomass density, settleability, and bioactivity. And relatively stable amounts of extracellular polymeric substances (EPS) with a stable protein/ polysaccharide (PN/PS) ratio were observed over operation. Meanwhile, a low observed sludge yield (Yobs) of 0.083 g MLSS/g COD (0.082 g MLVSS/g COD) was obtained. A maximum anaerobic phosphorus release up to 43.54 mg/L was found, thus providing phosphorus-rich and low-turbidity stream for further phosphorus recovery. Overall, the SNDPR system deserved attention for in situ sludge reduction and potential phosphorus recovery, beyond reliable and stable wastewater treatment.


Subject(s)
Nitrification , Sewage , Bioreactors , Denitrification , Nitrogen , Phosphorus , Waste Disposal, Fluid
18.
J Hazard Mater ; 418: 126358, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34130162

ABSTRACT

Novel porous alginate-based nanocomposite hydrogels were prepared by incorporating polyaniline-polypyrrole modified graphene oxide (GO@PAN-PPy) as reinforcing fillers into the alginate matrix (GO@PAN-PPy/SA) for Cr(VI) and Cu(II) removal from water. Different in-situ co-polymerization functionalized GO with Py-to-An mass ratios of monomers (from nil to 1:1) and contents of GO@PAN-PPy (from nil to 2.0%(w/v)) were embedded into the alginate backbone to improve the sorption performance. Key factors, such as pH, coexisting metal ions, and swelling states were investigated in batch adsorption modes. The synergistic effect combined from polymer backbone and fillers could lower the impact of the pH-dependent adsorption reaction. With an adsorption ability superior to that of plain SA and GO/SA, the optimized GO@PAN-PPy-2(1)/SA exhibited good experimental maximum adsorption capacities for Cr(VI) (~133.7 mg/g) and Cu(II) (~87.2 mg/g) at pH 3.0, which were better than those of many other similar sorbents. The sorbents possessed excellent adaptability for 0.2 M salt for Cr(VI) removal but poor for Cu(II) removal. Pre-swelling treatment and co-adsorption could enhance the adsorption performance. The excellent reusability of hydrogel was demonstrated after five cycles in single/binary system. Overall, this work reveals that the resultant hydrogel holds potential as candidate sorbent to remove anionic-cationic heavy metal ions from water.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Alginates , Nanogels , Polymers , Porosity , Pyrroles , Water , Water Pollutants, Chemical/analysis
19.
Bioresour Technol ; 337: 125363, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34130233

ABSTRACT

The washing wastewater from the desulfuration and denitration of power plants has high salt (chloride and sulfate) and ammonia-nitrogen concentrations and is difficult to treat using microbiological methods. A novel anoxic/oxic biofilm process was developed to remove ammonia from wastewater. Three rapid strategies (sulfate concentration was increased from 0 to 60 g/L in 6, 13, and 22 days (R1, R2, and R3, respectively)) were applied and produced biofilm with the same nitrification capacity as slow strategies (100-203 days). Excessive organics inhibited the nitrification capacity of the biofilm. R1 excelled at ammonia removal (from 30% to 95%, 70 mg/(L·d), with an effluent ammonia concentration of 4 mg/L) at 60 g/L salinity after the organic load was reduced. The content of extracellular polymeric substances in biofilm depended on its capacity to remove organics. Pseudomonas and Thauera were enriched in the three reactors. Controlling the organic load might prevent the sulfur cycle.


Subject(s)
Ammonia , Wastewater , Biofilms , Bioreactors , Nitrification , Nitrogen , Salinity , Waste Disposal, Fluid
20.
Chemosphere ; 282: 130974, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34107422

ABSTRACT

Currently, varied processes adopted to remove hexavalent chromium from aqueous solution have been realized to cause secondary pollution. As such, this study explored a green method for aqueous hexavalent chromium (Cr(Ⅵ)) reclamation by waste steel slag (SS) enhanced by natural pyrite (NP). Compared with the sole SS or NP, more efficient Cr(Ⅵ) removal was achieved by NP-SS at an initial pH value ranging from 1 to 8, resulting in a final pH value of 7-8. Cr(Ⅵ) in the solution could be initially reduced to Cr(III) by Fe2+ provided by NP, which was then bound with the OH- in the solution and the supersaturated calcium silicate hydrate on the surface of SS. In addition, the stearic acid anions existing on the surface of SS could promote the adsorption of Cr(III) to form chromium stearate. The used adsorbent could be potentially used for chromium smelting. Overall, this study provides a feasible and environmental sustainable solution to chromium reclamation from hexavalent chromium-containing wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Chromium/analysis , Hydrogen-Ion Concentration , Iron , Steel , Sulfides , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...