Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
1.
Biomaterials ; 313: 122796, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39226654

ABSTRACT

Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.


Subject(s)
Breast Neoplasms , Cellular Senescence , Drug Resistance, Neoplasm , Neoplastic Stem Cells , Humans , Animals , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Drug Resistance, Neoplasm/drug effects , Female , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cellular Senescence/drug effects , Cell Line, Tumor , Mice , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Genetic Engineering/methods , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Nanoparticles/chemistry , Single-Chain Antibodies/chemistry , Tumor Escape/drug effects , B7-H1 Antigen/metabolism , Apoptosis/drug effects , Biomimetics/methods , B7 Antigens
2.
Neurospine ; 21(3): 966-972, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39363491

ABSTRACT

OBJECTIVE: To investigate the ability of radiological parameter canal bone ratio (CBR) to assess bone mineral density and to differentiate between patients with primary and multiple osteoporotic vertebral compression fracture (OVCF). METHODS: A retrospective analysis was conducted on OVCF patients treated at our hospital. CBR was measured through full-spine x-rays. Patients were categorized into primary and multiple fracture groups. Receiver operating characteristic curve analysis and area under the curve (AUC) calculation were used to assess the ability of parameters to predict osteoporosis and multiple fractures. Predictors of T values were analyzed by multiple linear regression, and independent risk factors for multiple fractures were determined by multiple logistic regression analysis. RESULTS: CBR showed a moderate negative correlation with dual-energy x-ray absorptiometry T values (r = -0.642, p < 0.01). Higher CBR (odds ratio [OR], -6.483; 95% confidence interval [CI], -8.234 to -4.732; p < 0.01) and lower body mass index (OR, 0.054; 95% CI, 0.023-0.086; p < 0.01) were independent risk factors for osteoporosis. Patients with multiple fractures had lower T values (mean ± standard deviation [SD]: -3.76 ± 0.73 vs. -2.83 ± 0.75, p < 0.01) and higher CBR (mean ± SD: 0.54 ± 0.07 vs. 0.46 ± 0.06, p < 0.01). CBR had an AUC of 0.819 in predicting multiple fractures with a threshold of 0.53. T values prediction had an AUC of 0.816 with a threshold of -3.45. CBR > 0.53 was an independent risk factor for multiple fractures (OR, 14.66; 95% CI, 4.97-43.22; p < 0.01). CONCLUSION: CBR is negatively correlated with bone mineral density (BMD) and can be a novel opportunistic BMD assessment method. It is a simple and effective measurement index for predicting multiple fractures, with predictive performance not inferior to T values.

3.
Front Immunol ; 15: 1435334, 2024.
Article in English | MEDLINE | ID: mdl-39376571

ABSTRACT

Tumor microenvironment (TME) immune cells and gastric mucosal microbiome constitute two vital elements of tumor tissue. Increasing evidence has elucidated their clinicopathological significance in predicting outcomes and therapeutic efficacy. However, comprehensive characterization of immune cell-associated microbiome signatures in the TME is still in the early stages of development. Here, we characterized the gastric mucosa microbiome and its associations with immune-activated related transcripts (IATs) in 170 GC tumor tissues and matched non-tumor tissues using 16s rRNA gene sequencing and quantitative reverse transcription-PCR. Microbial diversity and richness were significantly higher in GC tumor tissues than in non-tumor tissues. Differences in microbial composition between the groups were evident, with Firmicutes, Proteobacteria, Bacteroidota, Campilobacterota, Actinobacteria, Fusobacteriota, Verrucomicrobiota, Acidobacteriota, and Cyanobacteria being the dominant phyla in the gastric mucosal microbiota. Microbial interaction network analysis revealed distinctive centralities of oral bacteria (such as Fusobacterium, Porphyromonas, Prevotella, etc.) in both tumor and normal mucosae networks, suggesting their significant influence on GC microbial ecology. Furthermore, we analyzed the expression of IATs (CXCL9, CXCL10, GZMA, GZMB, PRF1, CD8A, IFNG, TBX2, and TNF) and characterized IAT-relevant gastric microbiome signatures in GC patients. Our results showed that the expression of CXCL9, CXCL10, GZMA, GZMB, PRF1 and IFNG was significantly higher in tumor tissues than in adjacent normal tissues in GC patients. Notably, high expression of IATs in tumor tissues was associated with improved survival in GC patients and could serve as a powerful predictor for disease-free survival. Additionally, analysis of IAT levels and mucosal microbiota diversity revealed a correlation between higher IAT expression and increased microbiota richness and evenness in the IATs high group, suggesting potential interactions between mucosal microbiota and tumor immunopathology. Spearman correlation analysis showed positive associations between IAT expression and specific mucosal bacterial species. Notably, Akkermansia muciniphila demonstrated potential involvement in modulating GZMB expression in the GC mucosal microenvironment. These findings underscore the importance of mucosal microbiota alterations in GC and suggest potential therapeutic targets focusing on modulating the tumor microbiota for improved clinical outcomes. The detailed characterization of these elements has profound implications for both treatment and survival prediction in GC. We observed that microbial diversity and richness were significantly higher in GC tumor tissues compared to non-tumor tissues. These differences highlight the unique microbial landscape of GC tumors and suggest that the microbiome could influence tumor development and progression. Importantly, our study demonstrated that high expression levels of IATs in GC tumor tissues were associated with improved patient survival. This suggests that IATs not only reflect immune activation but also serve as valuable biomarkers for predicting disease-free survival. The potential of IATs as predictive markers underscores their utility in guiding therapeutic strategies and personalizing treatment approaches. Moreover, the correlation between higher IAT expression and increased microbiota richness and evenness suggests that a diverse and balanced microbiome may enhance immune responses and contribute to better clinical outcomes. These findings highlight the critical need to consider mucosal microbiota alterations in GC management. Targeting the tumor microbiota could emerge as a promising therapeutic strategy, potentially leading to more effective treatments and improved patient outcomes. Understanding and modulating the microbiome's role in GC opens new avenues for innovative therapeutic interventions and personalized medicine.


Subject(s)
Gastric Mucosa , Gastrointestinal Microbiome , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/microbiology , Stomach Neoplasms/genetics , Stomach Neoplasms/mortality , Gastric Mucosa/microbiology , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Female , Tumor Microenvironment/immunology , Male , Middle Aged , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/genetics , Aged , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/immunology , Bacteria/genetics , Adult
4.
Nano Lett ; 24(39): 12204-12210, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39311398

ABSTRACT

The 2D magnet Fe3GaTe2 has received considerable attention for its high Curie temperature (TC), robust intrinsic ferromagnetism, and significant perpendicular magnetic anisotropy (PMA). In this study, the dynamic magnetic properties of Fe3GaTe2 are systematically investigated using an all-optical pump-probe technique. We find that the spin precession frequency (f) is as high as 351.2 GHz at T = 10 K under a field of H = 70 kOe. However, it decreases to 242.8 GHz at 300 K, mainly due to the reduced effective PMA field (Hkeff). The Gilbert damping factor (α) is modest, which increases from 0.039 (10 K) to 0.075 (300 K) owing to the enhanced scattering rate. Interestingly, when Fe3GaTe2 is coupled with 2 nm of Co, the Hkeff, f, and α just decrease slightly, highlighting the dominant influence of Fe3GaTe2. These findings substantially deepen our understanding of Fe3GaTe2, promoting the development of spintronic devices based on advanced 2D magnetic materials.

5.
ACS Nano ; 18(40): 27487-27502, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39329191

ABSTRACT

Reprogramming of cellular metabolism in tumors promoted the epithelial-mesenchymal transition (EMT) process and established immune-suppressive tumor microenvironments (iTME), leading to drug resistance and tumor progression. Therefore, remodeling the cellular metabolism of tumor cells was a promising strategy to overcome drug-resistant tumors. Herein, CD276 and MTHFD2 were identified as a specific marker and a therapeutic target, respectively, for targeting sunitinib-resistant clear cell renal cell carcinoma (ccRCC) and its cancer stem cell (CSC) population. The blockade of MTHFD2 was confirmed to overcome drug resistance via remodeling of folate-nucleotide metabolism. Moreover, the manganese dioxide nanoparticle was proven here by a high-throughput metabolome to be capable of remodeling γ-aminobutyric acid (GABA) metabolism in tumor cells to reconstruct the iTME. Based on these findings, engineered CD276-CD133 dual-targeting biomimetic nanovesicle EMφ-siMTHFD2-MnO2@Suni was designed to overcome drug resistance and terminate tumor progression of ccRCC. Using ccRCC-bearing immune-humanized NPG model mice, EMφ-siMTHFD2-MnO2@Suni was observed to remodel folate-nucleotide and GABA metabolism to deactivate the EMT process and reconstruct the iTME thereby overcoming the drug resistance. In the incomplete-tumor-resection recurrence model and metastasis model, EMφ-siMTHFD2-MnO2@Suni reduced recurrence and metastasis in vivo. This work thus provided an innovative approach that held great potential in the treatment of drug-resistant ccRCC by remodeling cellular metabolism.


Subject(s)
Carcinoma, Renal Cell , Drug Resistance, Neoplasm , Folic Acid , Kidney Neoplasms , Manganese Compounds , Sunitinib , gamma-Aminobutyric Acid , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Drug Resistance, Neoplasm/drug effects , Humans , Animals , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Folic Acid/chemistry , Folic Acid/metabolism , Mice , Sunitinib/pharmacology , Sunitinib/chemistry , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/chemistry , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Nanoparticles/chemistry , Nucleotides/chemistry , Nucleotides/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetic Materials/metabolism , Cell Line, Tumor , Tumor Microenvironment/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Aminohydrolases , Methylenetetrahydrofolate Dehydrogenase (NADP) , Oxides , Multifunctional Enzymes
6.
Bone ; 189: 117266, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341481

ABSTRACT

Leukemia inhibitory factor (LIF) is a multifunctional cytokine that plays a crucial role in various biological processes. However, LIF involvement in iron metabolism remains almost unexplored. This study aimed to explore the impact of LIF on systemic iron transportation and its potential role in ferroptosis in osteoblasts. We observed that the Lif-deficient (Lif-/-) mice is characterized by a reduction in bone mass and a decrease in bone mineral density compared with wild-type (WT) mice. Energy-dispersive X-ray spectroscopy revealed a marked increase in iron content on the surface of femurs from Lif-/- mice. Meanwhile, iron stores test lower iron levels in the spleens and higher levels in the femurs of Lif-/- mice. Besides, Lif-/- mice display increased levels of serum iron, total iron-binding capacity, unsaturated iron-binding capacity, and transferrin saturation and serum ferritin relative to WT mice. Hepcidin mRNA expression reduction in the liver of Lif-/- mice. It also holds true in the AML-12 hepatocyte cell line after Lif-knockdown. Immunohistochemistry and RT-PCR revealed elevated ferroportin (FPN) in duodenal cells of Lif-/- mice. Lif-deficiency decreases SLC7A11 levels in osteoblasts. In addition, overexpression of LIF downregulates CD71, DCYTB, and DMT1, thereby reducing iron uptake in iron-overloaded cells. Femur immunohistochemistry (IHC) revealed increased ACSL4 and decreased GPX4 and SLC7A11, indicating an increase in ferroptosis of osteoblasts in Lif-/- mice. Whole-transcriptome sequencing showed gene expression changes after Lif-knockdown, exhibiting a negative correlation with genes involved in long-chain fatty acid transport, mitochondrial organization, and the p38 MAPK signaling pathway. These results demonstrate that Lif-deficiency alter systemic iron metabolism and increases the susceptibility of osteoblasts to ferroptosis.

7.
Angew Chem Int Ed Engl ; : e202413030, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313470

ABSTRACT

The design of efficient heterogenous redox mediators with favorable affinity to substrate and electrolyte are much desired yet still challenging for the development of indirect electrolysis system. Herein, for the first time, we have developed a solid-liquid-gas three-phase indirect electrolysis system based on a covalent organic framework (Dha-COF-Cu) as heterogenous redox mediator for S-S coupling reaction. Dha-COF-Cu with the integration of high porosity, nanorod morphology, abundant hydroxyl groups and active Cu sites is much beneficial for the adsorption/activation of thiols, uniform dispersion and high wettability in electrolyte, and efficient interfacial electron transfer. Notably, Dha-COF-Cu as solid-phase redox mediator exhibits excellent electrocatalytic efficiency for the formation of value-added liquid-phase S-S bond product (yields up to 99%) coupling with the generation of gas-phase product of H2 (~1.40 mmol g-1 h-1), resulting in a powerful three-phase indirect electrolysis system. This is the first work about COFs that can be applied in three-phase indirect electrolysis system, which might promote the development of porous crystalline materials in this field.

8.
ACS Appl Mater Interfaces ; 16(38): 50295-50304, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39265065

ABSTRACT

Cascade-enzyme reaction systems have emerged as promising tools for treating malignant tumors by efficiently converting nutrients into toxic substances. However, the challenges of poor localized retention capacity and utilization of highly active enzymes often result in extratumoral toxicity and reduced therapeutic efficacy. In this study, we introduced a cell membrane-DNA nanoanchor (DNANA) with a spatially confined cascade enzyme for in vivo tumor therapy. The DNANAs are constructed using a polyvalent cholesterol-labeled DNA triangular prism, ensuring high stability in cell membrane attachment. Glucose oxidase (GOx) and horseradish peroxidase (HRP), both modified with streptavidin, are precisely confined to biotin-labeled DNANAs. Upon intratumoral injection, DNANA enzymes efficiently colonize the tumor site through cellular membrane engineering strategies, significantly reducing off-target enzyme leakage and the associated risks of extratumoral toxicity. Furthermore, DNANA enzymes demonstrated effective cancer therapy in vitro and in vivo by depleting glucose and producing highly cytotoxic hydroxyl radicals in the vicinity of tumor cells. This membrane-engineered cascade-enzyme reaction system presents a conceptual approach to tumor treatment.


Subject(s)
DNA , Glucose Oxidase , Horseradish Peroxidase , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Animals , Humans , DNA/chemistry , DNA/metabolism , Mice , Neoplasms/drug therapy , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Membrane/metabolism , Cholesterol/chemistry
9.
Front Public Health ; 12: 1436304, 2024.
Article in English | MEDLINE | ID: mdl-39301513

ABSTRACT

Introduction: This study investigates the experiences of leading Chinese companies in environmental conservation under varying extreme climate conditions, focusing on the role of artificial intelligence (AI) and governmental assistance. Methods: A survey was conducted involving 200 participants to assess recognition and endorsement of AI's role in environmental protection and to explore the adoption of AI technologies by firms for enhancing environmental management practices. Results: The survey revealed widespread recognition of Tencent's green initiatives and strong support for AI's role in environmental protection. Many firms are considering adopting AI technologies to optimize energy management, deploy intelligent HVAC systems, and improve the operations of data centers and smart lighting systems. Discussion: The findings highlight a strong belief in AI's potential to advance environmental protection efforts, with a call for increased governmental support to foster this development. The study underscores the importance of a partnership between businesses and governments to leverage AI for environmental sustainability, contributing significantly to conservation efforts.


Subject(s)
Artificial Intelligence , China , Humans , Surveys and Questionnaires , Conservation of Natural Resources , Environmental Pollution , Climate Change , East Asian People
10.
Research (Wash D C) ; 7: 0464, 2024.
Article in English | MEDLINE | ID: mdl-39253100

ABSTRACT

Rational regulation of reactive oxygen species (ROS) plays a vital importance in maintaining homeostasis of living biological systems. For ROS-related pathologies, chemotherapy technology derived from metal nanomaterials currently occupies a pivotal position. However, they suffer from inherent issues such as complicated synthesis, batch-to-batch variability, high cost, and potential biological toxicity caused by metal elements. Here, we reported for the first time that dual-action 3,5-dihydroxy-1-ketonaphthalene-structured small-molecule enzyme imitator (DHKNase) exhibited 2-edged ROS regulation, catering to the execution of physiology-beneficial ROS destiny among diverse pathologies in living systems. Based on this, DHKNase is validated to enable remarkable therapeutic effects in 2 classic disease models, including the pathogen-infected wound-healing model and the dextran sulfate sodium (DSS)-caused inflammatory bowel disease (IBD). This work provides a guiding landmark for developing novel natural small-molecule enzyme imitator and significantly expands their application potential in the biomedical field.

11.
Front Psychol ; 15: 1387983, 2024.
Article in English | MEDLINE | ID: mdl-39086428

ABSTRACT

Background: The long-term impact of COVID-19 on the mental health and well-being of college students, specifically trends over time after full removal of COVID-19 restrictions, has not been well-studied. Methods: Four consecutive cross-sectional surveys were conducted in December 2022 (N = 689), March 2023 (N = 456), June 2023 (N = 300), and November 2023 (N = 601) at a university in Sichuan Province, China. Results: The proportion of students with COVID-19 panic decreased from 95.1 to 77.3% (p < 0.001). The prevalence of moderate anxiety and above decreased from 18 to 13.6% (p < 0.001), and the prevalence of moderate and above depression decreased from 33.1 to 28.1% (p < 0.001), while the prevalence of post-traumatic stress disorder (PTSD) increased from 21.5 to 29.6% (p < 0.005). Further, the proportion of suicidal thoughts increased from 7.7 to 14.8% (p < 0.001). Suicidal thoughts and self-injuries were significantly associated with COVID-19 panic, depression, anxiety, and PTSD. Students who reported being in close contact with COVID-19 patients in the past were more likely to develop PTSD. Further, COVID-19-induced panic was a risk factor for self-injury. Conclusion: One year after the COVID-19 pandemic, the overall mental health of college students was not optimal. Hence, we can conclude that the long-term impacts of COVID-19 on the mental health of college students may have already occurred. To mitigate this impact and prepare for the next major public health event, strengthening college students' mental health curricula and promoting healthy behaviors among college students should be a priority for universities and education authorities.

12.
Diagn Pathol ; 19(1): 109, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138533

ABSTRACT

BACKGROUND: Clear cell odontogenic carcinoma (CCOC) is an odontogenic carcinoma characterized by sheets and islands of vacuolated and clear cells. The diagnosis of atypical CCOC can pose a challenge when tumor cells deviate from their characteristic clear morphology, even with the aid of genetic profiling for CCOC identification. CASE PRESENTATION: In this manuscript, we detailed the inaugural instance of a recurrently recurring clear cell odontogenic carcinoma (CCOC) with pronounced squamous differentiation in a 64-year-old male. The primary tumor in this individual initially displayed a biphasic clear cell phenotype. However, subsequent to the third recurrence, the clear tumor cells were entirely supplanted by epidermoid cells characterized by eosinophilic cytoplasm, vesicular chromatin, and prominent nucleoli. Notable aggressive attributes such as necrosis, conspicuous cytological malignancy, perineural dissemination, and vascular invasion were noted. Additionally, the tumor progressed to manifest lung metastases. The tumor cells exhibited positive immunoreactivity for AE1/AE3, KRT19, Pan-CK, EMA, P40, P63, CK34ßE12, and P53, while they tested negative for CK35ßH11, KRT7, S-100, and neuroendocrine markers. The Ki-67 proliferation index was calculated at an average of 15%. Furthermore, FISH analysis unveiled the presence of the EWSR1::ATF1 gene fusion. CONCLUSIONS: This case illustrated a rare and aggressive case of CCOC characterized by significant squamous differentiation upon recurrence of the tumor.


Subject(s)
Biomarkers, Tumor , Odontogenic Tumors , Humans , Male , Middle Aged , Odontogenic Tumors/pathology , Odontogenic Tumors/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/genetics , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/pathology , Oncogene Proteins, Fusion/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Immunohistochemistry
13.
Sci Rep ; 14(1): 19839, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39191928

ABSTRACT

The compound NS5806 is a Kv4 channel modulator. This study investigated the chronic effects of NS5806 on cardiac hypertrophy induced by transverse aortic constriction (TAC) in mice in vivo and on neonatal rat ventricular cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) in vitro. Four weeks after TAC, NS5806 was administered by gavage for 4 weeks. Echocardiograms revealed pronounced left ventricular (LV) hypertrophy in TAC-treated mice compared with sham mice. NS5806 attenuated LV hypertrophy, as manifested by the restoration of LV wall thickness and weight and the reversal of contractile dysfunction in TAC-treated mice. NS5806 also blunted the TAC-induced increases in the expression of cardiac hypertrophic and fibrotic genes, including ANP, BNP and TGF-ß. Electrophysiological recordings revealed a significant prolongation of action potential duration and QT intervals, accompanied by an increase in susceptibility to ventricular arrhythmias in mice with cardiac hypertrophy. However, NS5806 restored these alterations in electrical parameters and thus reduced the incidence of mouse sudden death. Furthermore, NS5806 abrogated the downregulation of the Kv4 protein in the hypertrophic myocardium but did not influence the reduction in Kv4 mRNA expression. In addition, NS5806 suppressed in vitro cardiomyocyte hypertrophy. The results provide novel insight for further ion channel modulator development as a potential treatment option for cardiac hypertrophy.


Subject(s)
Cardiomegaly , Myocytes, Cardiac , Shal Potassium Channels , Animals , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Shal Potassium Channels/metabolism , Shal Potassium Channels/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/drug therapy , Male , Rats , Mice, Inbred C57BL , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Disease Models, Animal , Phenylurea Compounds , Tetrazoles
14.
J Cell Mol Med ; 28(12): e18458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031798

ABSTRACT

Schistosomiasis is a parasitic disease characterized by liver fibrosis, a process driven by the activation of hepatic stellate cells (HSCs) and subsequent collagen production. Previous studies from our laboratory have demonstrated the ability of Schistosoma japonicum protein P40 (SjP40) to inhibit HSCs activation and exert an antifibrotic effect. In this study, we aimed to elucidate the molecular mechanism underlying the inhibitory effect of recombinant SjP40 (rSjP40) on HSCs activation. Using a cell model in which rSjP40 inhibited LX-2 cell activation, we performed RNA-seq analyses and identified ATF3 as the most significantly altered gene. Further investigation revealed that rSjP40 inhibited HSCs activation partly by suppressing ATF3 activation. Knockdown of ATF3 in mouse liver significantly alleviated S. japonicum-induced liver fibrosis. Moreover, our results indicate that ATF3 is a direct target of microRNA-494-3p, a microRNA associated with anti-liver fibrosis effects. rSjP40 was found to downregulate ATF3 expression by upregulating microRNA-494-3p in LX-2 cells. This downregulation led to the inhibition of the expression of liver fibrosis proteins α-SMA and COL1A1, ultimately alleviating liver fibrosis caused by S. japonicum.


Subject(s)
Activating Transcription Factor 3 , Helminth Proteins , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , Schistosoma japonicum , Schistosomiasis japonica , Animals , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/parasitology , Schistosomiasis japonica/parasitology , Schistosomiasis japonica/metabolism , Schistosomiasis japonica/genetics , Liver Cirrhosis/parasitology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Actins/metabolism , Actins/genetics , Cell Line , Gene Expression Regulation , Liver/metabolism , Liver/parasitology , Liver/pathology , Disease Models, Animal , Antigens, Helminth
15.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
16.
BMC Geriatr ; 24(1): 491, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834944

ABSTRACT

BACKGROUND: Early detection of patients at risk of falling is crucial. This study was designed to develop and internally validate a novel risk score to classify patients at risk of falls. METHODS: A total of 334 older people from a fall clinic in a medical center were selected. Least absolute shrinkage and selection operator (LASSO) regression was used to minimize the potential concatenation of variables measured from the same patient and the overfitting of variables. A logistic regression model for 1-year fall prediction was developed for the entire dataset using newly identified relevant variables. Model performance was evaluated using the bootstrap method, which included measures of overall predictive performance, discrimination, and calibration. To streamline the assessment process, a scoring system for predicting 1-year fall risk was created. RESULTS: We developed a new model for predicting 1-year falls, which included the FRQ-Q1, FRQ-Q3, and single-leg standing time (left foot). After internal validation, the model showed good discrimination (C statistic, 0.803 [95% CI 0.749-0.857]) and overall accuracy (Brier score, 0.146). Compared to another model that used the total FRQ score instead, the new model showed better continuous net reclassification improvement (NRI) [0.468 (0.314-0.622), P < 0.01], categorical NRI [0.507 (0.291-0.724), P < 0.01; cutoff: 0.200-0.800], and integrated discrimination [0.205 (0.147-0.262), P < 0.01]. The variables in the new model were subsequently incorporated into a risk score. The discriminatory ability of the scoring system was similar (C statistic, 0.809; 95% CI, 0.756-0.861; optimism-corrected C statistic, 0.808) to that of the logistic regression model at internal bootstrap validation. CONCLUSIONS: This study resulted in the development and internal verification of a scoring system to classify 334 patients at risk for falls. The newly developed score demonstrated greater accuracy in predicting falls in elderly people than did the Timed Up and Go test and the 30-Second Chair Sit-Stand test. Additionally, the scale demonstrated superior clinical validity for identifying fall risk.


Subject(s)
Accidental Falls , Independent Living , Humans , Accidental Falls/prevention & control , Female , Male , Aged , Aged, 80 and over , Risk Assessment/methods , Geriatric Assessment/methods , Predictive Value of Tests , Risk Factors
17.
J Affect Disord ; 361: 291-298, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38876315

ABSTRACT

OBJECTIVE: This prospective cohort study, conducted at the Fenglin Community Health Service Center (FCHC) in Xuhui District, Shanghai, aimed to investigate the impact of maternal psychological status on offspring neurodevelopment. METHODS: A total of 430 mother-child pairs were included, with pregnant women enrolled between February 18, 2020, and April 19, 2021. Face-to-face interviews and electronic data collection on demographic characteristics, health conditions and medical history were employed at various stages of pregnancy and postpartum. Maternal depression and anxiety were assessed using the PHQ-9 and GAD-7 scales, while offspring neurodevelopment was measured at six months using the Ages and Stages Questionnaire 3rd Edition (ASQ-3). In statistical analyses, group-based trajectory modeling (GBTM) was employed to identify the latent groups for maternal psychological trajectories, including depression and anxiety, and logistic regression was used to explore associations between maternal psychological trajectories and offspring neurodevelopment, adjusting for potential confounders. RESULTS: Five latent trajectory groups were identified for both depression and anxiety, exhibiting distinct patterns over time. Results indicated that maternal psychological trajectories were associated with various domains of offspring neurodevelopment, including communication, problem-solving, personal-social, and gross motor skills. Specifically, mothers in trajectory groups characterized by the highest level of depression or anxiety showed increased odds of offspring neurodevelopmental delays compared to reference groups. CONCLUSION: Our findings underscore the importance of maternal mental health during the perinatal period and highlight the potential implications for offspring neurodevelopment. Further research is warranted to elucidate underlying mechanisms and inform targeted interventions to support maternal mental well-being and optimize offspring outcomes.


Subject(s)
Anxiety , Child Development , Depression , Humans , Female , Pregnancy , China/epidemiology , Adult , Infant , Anxiety/psychology , Anxiety/epidemiology , Prospective Studies , Depression/psychology , Depression/epidemiology , Child Development/physiology , Longitudinal Studies , Male , Mothers/psychology , Pregnancy Complications/psychology , Prenatal Exposure Delayed Effects/psychology , Neurodevelopmental Disorders/epidemiology
18.
J Pharmacol Exp Ther ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849141

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by high mortality rates primarily due to its propensity for metastasis. Addressing this challenge necessitates the development of effective antimetastatic therapies. This study aimed to identify natural compounds with potential antimetastatic properties mainly based on the high-throughput phenotypic screening system. This system, utilizing luciferase reporter gene assays combined with scratch wound assays, evaluates compounds based on their influence on the epithelial-mesenchymal transition (EMT) marker E-cadherin. Through this approach, aurovertin B (AVB) was revealed to have significant antimetastatic capability. Notably, AVB exhibited substantial metastasis suppression in many TNBC cell lines, including MDA-MB-231, HCC1937 and 4T1. Also, its remarkable antimetastatic activity was demonstrated in vivo via the orthotopic breast cancer mouse model. Further exploration revealed a pronounced association between AVB-induced upregulation of DUSP1 (dual-specificity phosphatase 1) and its inhibitory effect on TNBC metastasis. Additionally, microarray analysis conducted to elucidate the underlying mechanism of the AVB-DUSP1 interaction identified ATF3 (activating transcription factor 3) as a critical transcription factor instrumental in DUSP1 transcriptional activation. This discovery, coupled with observations of enhanced ATF3-DUSP1 expression and consequent reduction in TNBC metastatic foci in response to AVB, provides novel insights into the molecular mechanisms driving metastasis in TNBC. Significance Statement We construct a high-throughput phenotypic screening system utilizing EMT marker E-cadherin promoter luciferase reporter gene combined with scratch wound assays. Aurovertin B was revealed to possess significant antimetastatic activity through this approach, which was further demonstrated via in vivo and in vitro experiments. The discovery of the regulatory role of the ATF3-DUSP1 pathway enriches our understanding of TNBC metastasis mechanism and suggests the potential of ATF3 and DUSP1 as biomarkers for diagnosing TNBC metastasis.

19.
Ibrain ; 10(2): 186-196, 2024.
Article in English | MEDLINE | ID: mdl-38915952

ABSTRACT

This study aimed to explore whether the combined application of desflurane and dexmedetomidine (Dex) reduces the occurrence of postoperative neurocognitive disorders (PND) in patients. We selected patients in our hospital who underwent surgery under general anesthesia, and divided them into two groups: Dex and desflurane (Dex + Des) and desflurane (Des) groups. The data of patients were collected and the Mini-Mental State Examination (MMSE) score was used to assess cognitive status. The blood cell counts were determined preoperatively and on postoperative days 1, 3, and 6, and the percentage of neutrophils and lymphocytes were also recorded. The statistical methods used were the independent-samples t-test and the χ 2 test. Pearson's correlation was used to analyze the correlation between PND and inflammation. The incidence of PND in the Dex + Des group was lower than that in the Des group. The postoperative MMSE scores in the Dex + Des group were higher than those in the Des group (p = 0.032). The percentage of neutrophils in the Dex + Des group was significantly lower than that in the Des group on the first and third days after surgery (p = 0.007; p = 0.028). The MMSE scores on the first day after surgery were negatively correlated with the multiple changes in white blood counts and the percentage of neutrophils (r = -0.3038 and -0.3330). Dex combined with Des reduced the incidence of PND and reduced the postoperative inflammatory cell counts.

20.
Langmuir ; 40(25): 13183-13189, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38874200

ABSTRACT

The molecular (pyren-1-yloxy)-acetic acid (Py) with excellent fluorescence properties was synthesized from 1-hydroxypyrene (Hp) and formed a supramolecular gel with an acid-base stimulus response in dimethylformamide and water. On the basis of gel, the fluorescent dye perylene 3, 9-dicarbxylic acid, and rhodamine 6g were added successively to construct a step-by-step artificial light-harvesting system, so that the fluorescence color changed from blue-purple to green to red, and white light emission was realized by adjusting the ratio of donors and acceptors.

SELECTION OF CITATIONS
SEARCH DETAIL