Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Sci Total Environ ; 946: 174326, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950631

ABSTRACT

A significant reduction in carbon dioxide (CO2) emissions caused by transportation is essential for attaining sustainable urban development. Carbon concentrations from road traffic in urban areas exhibit complex spatial patterns due to the impact of street configurations, mobile sources, and human activities. However, a comprehensive understanding of these patterns, which involve complex interactions, is still lacking due to the human perspective of road interface characteristics has not been taken into account. In this study, a mobile travel platform was constructed to collect both on-road navigation Street View Panoramas (OSVPs) and the corresponding CO2 concentrations. >100 thousand sample pairs that matched "street view-CO2 concentration" were obtained, covering 675.8 km of roads in Shenzhen, China. In addition, four ensemble learning (EL) models were utilized to establish nonlinear connections between the semantic and object features of streetscapes and CO2 concentrations. After performing EL fusion modeling, the predictive R2 in the test set exceeded 90 %, and the mean absolute error (MAE) was <3.2 ppm. The model was applied to Baidu Street View Panoramas (BSVPs) in Shenzhen to generate a map of average on-road CO2 with a 100 m resolution, and the Local Indicator of Spatial Association (LISA) was then used to identify high CO2 intensity spatial clusters. Additionally, the Light Gradient Boost-SHapley Additive exPlanation (LGB-SHAP) analysis revealed that vertically planted trees can reduce CO2 emissions from on-road sources. Moreover, the factors that affect on-road CO2 exhibit interaction and threshold effects. Street View Panoramas (SVPs) and Artificial Intelligence (AI) were adopted here to enhance the spatial measurement of on-road CO2 concentrations and the understanding of driving factors. Our approach facilitates the assessment and design of low-emission transportation in urban areas, which is critical for promoting sustainable traffic development.

2.
Clin Transl Oncol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965191

ABSTRACT

BACKGROUND: In AFP-negative hepatocellular carcinoma patients, markers for predicting tumor progression or prognosis are limited. Therefore, our objective is to establish an optimal predicet model for this subset of patients, utilizing interpretable methods to enhance the accuracy of HCC prognosis prediction. METHODS: We recruited a total of 508 AFP-negative HCC patients in this study, modeling with randomly divided training set and validated with validation set. At the same time, 86 patients treated in different time periods were used as internal validation. After comparing the cox model with the random forest model based on Lasso regression, we have chosen the former to build our model. This model has been interpreted with SHAP values and validated using ROC, DCA. Additionally, we have reconfirmed the model's effectiveness by employing an internal validation set of independent periods. Subsequently, we have established a risk stratification system. RESULTS: The AUC values of the Lasso-Cox model at 1, 2, and 3 years were 0.807, 0.846, and 0.803, and the AUC values of the Lasso-RSF model at 1, 2, and 3 years were 0.783, 0.829, and 0.776. Lasso-Cox model was finally used to predict the prognosis of AFP-negative HCC patients in this study. And BCLC stage, gamma-glutamyl transferase (GGT), diameter of tumor, lung metastases (LM), albumin (ALB), alkaline phosphatase (ALP), and the number of tumors were included in the model. The validation set and the separate internal validation set both indicate that the model is stable and accurate. Using risk factors to establish risk stratification, we observed that the survival time of the low-risk group, the middle-risk group, and the high-risk group decreased gradually, with significant differences among the three groups. CONCLUSION: The Lasso-Cox model based on AFP-negative HCC showed good predictive performance for liver cancer. SHAP explained the model for further clinical application.

3.
Nanoscale ; 16(24): 11480-11495, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38847092

ABSTRACT

MXenes, 2D transition metal carbides and nitrides, show great potential in electrocatalytic CO2 reduction reaction (ECO2RR) applications owing to their tunable structure, abundant surface functional groups, large specific surface area and remarkable conductivity. However, the ECO2RR has a complex pathway involving various reaction intermediates. The reaction process yields various products alongside a competitive electrolytic water-splitting reaction. These factors limit the application of MXenes in ECO2RRs. Therefore, this review begins by examining the functionalized modification of MXenes to enhance their catalytic activity and stability via the regulation of interactions between carriers and the catalytic centre. The review firstly covers the synthesis methods and characterisation techniques for functionalized MXenes reported in recent years. Secondly, it presents the methods applied for the functionalized modification of carriers through surface loading of single atoms, clusters, and nanoparticles and construction of composites. These methods regulate the stability, active sites, and metal-carrier electronic interactions. Finally, the article discusses the challenges, opportunities, pressing issues, and future prospects related to MXene-based electrocatalysts.

4.
Int J Biol Macromol ; 273(Pt 2): 133079, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942664

ABSTRACT

Proteins impact starch digestion, but the specific mechanism under heat-moisture treatment remains unclear. This study examined how proteins from various sources-white kidney bean, soybean, casein, whey-altered corn starch's structure, physicochemical properties, and digestibility during heat-moisture treatment (HMT). HMT and protein addition could significantly reduce starch's digestibility. The kidney bean protein-starch complex under HMT had the highest resistant starch at 19.74 %. Most proteins effectively inhibit α-amylase, with kidney bean being the most significantly (IC50 = 1.712 ± 0.085 mg/mL). HMT makes starch obtain a more rigid structure, limits its swelling ability, and reduces paste viscosity and amylose leaching. At the same time, proteins also improve starch's short-range order, acting as a physical barrier to digestion. Rheological and low-field NMR analyses revealed that protein enhanced the complexes' shear stability and water-binding capacity. These findings enrich the understanding of how proteins from different sources affect starch digestion under HMT, aiding the creation of nutritious, hypoglycemic foods.


Subject(s)
Digestion , Hot Temperature , Starch , Zea mays , alpha-Amylases , Starch/chemistry , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Zea mays/chemistry , Viscosity , Chemical Phenomena , Water/chemistry , Plant Proteins/chemistry , Amylose/chemistry , Rheology , Whey Proteins/chemistry
5.
Org Biomol Chem ; 22(27): 5578-5584, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38895804

ABSTRACT

A robust palladium-catalyzed Suzuki-Miyaura reaction of carboxylic-phosphoric anhydrides via highly selective C(O)-O bond cleavage under inorganic base-free conditions has been reported. Carboxylic-phosphoric anhydrides, generated through activating carboxylic acids using phosphates by esterification or direct dehydrogenative reaction with phosphites, have been employed as highly reactive electrophiles for Suzuki-Miyaura cross-coupling reactions. Broad substrate scope and excellent functional group tolerance have been demonstrated to be a general and practical approach for the synthesis of highly valuable ketones.

6.
Int J Biol Macromol ; 275(Pt 1): 133475, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945344

ABSTRACT

In recent years, there has been increasing attention to starch particle-stabilized Pickering emulsions. In this study, the tigernut starch (TNS) was isolated from the tigernut meal, and further octenyl succinic anhydride tigernut starch (OSATNS) was prepared by a semi-dry method. The structure of OSATNS was analyzed and characterized by degrees of substitution (DS), contact angle, SEM, and FTIR. OSATNS was then used to stabilize the curcumin-loaded Pickering emulsion to improve the water solubility and stability of the curcumin. The results showed that OSATNS with 3 %-9 % OSA exhibited a DS range of 0.012 to 0.029, and its contact angle increased from 69.23° to 84.76°. SEM revealed that TNS consisted of small starch particles averaging 7.71 µm, and esterification did not significantly alter their morphology or size. FTIR analysis confirmed successful OSA incorporation by revealing two new peaks at 1732 cm-1 and 1558 cm-1. After 7 days of storage, Pickering emulsions stabilized with OSATNS-9 % exhibited superior stability and curcumin retention compared to Tween 80 emulsions, maintaining retention rates above 80 % even after different heat treatments. In conclusion, this study shows the potential application of OSATNS in stabilizing Pickering emulsions and demonstrates its good thermal stability and protection against curcumin during storage.

7.
Food Chem X ; 22: 101511, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38911913

ABSTRACT

This study investigated the effects of varying amounts of added Cyperus esculentus polysaccharide (CEP) on the physicochemical and structural properties, as well as in vitro digestibility, of homologous Cyperus esculentus starch (CES). Compared to CES, the CES-CEP complexes showed reduced peak viscosity and breakdown value, and improved thermal paste stability of starch. Rheological properties showed that adding CEP reduced the consistency coefficient and pseudoelasticity of the complexes, thus increasing their resistance to shear thinning. FTIR analysis suggested the absence of covalent binding between CES and CEP. SEM showed a more homogeneous and dense gel structure, particularly in the CES-1.0%CEP sample. During in vitro digestion, the content of resistant starch in the complexes increased after CEP was added. Analysis of the interaction forces showed that the CES-CEP complexes had stronger hydrogen bonding and electrostatic interaction. This study offers valuable insights into the potential applications of CEP in starch-based foods.

9.
Sensors (Basel) ; 24(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474975

ABSTRACT

Because large oil-immersed transformers are enclosed by a metal shell, the on-site localization means it is difficult to achieve the accurate location of the patrol micro-robot inside a given transformer. To address this issue, a spatial ultrasonic localization method based on wavelet decomposition and PHAT-ß-γ generalized cross correlation is proposed in this paper. The method is carried out with a five-element stereo ultrasonic array for the location of a transformer patrol robot. Firstly, the localization signal is decomposed into wavelet coefficients of different scales, which would realize the adaptive decomposition of the frequency of the localization signal from low frequencies to high frequencies. Then, the wavelet coefficients are denoised and reconstructed by using the semi-soft threshold function. Second, a modified phase transform-beta-gamma (PHAT-ß-γ) method is used to calculate the exact time delay between different sensors by increasing the weights of the PHAT weighting function and introducing a correlation function. Finally, by using the proposed method, the accurate localization of the transformer patrol micro-robot is achieved with a five-element stereo ultrasonic array. The simulation and test results show that inside a transformer experimental oil tank (120 cm × 100 cm × 100 cm, L × W × H), the relative error of transformer patrol micro-robot spatial localization is within 4.1%, and the maximum localization error is less than 3 cm, which meets the requirement of engineering localization.

10.
BMC Infect Dis ; 24(1): 206, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360539

ABSTRACT

BACKGROUND: Fear of a global public health issue and fresh infection wave in the persistent COVID-19 pandemic has been enflamed by the appearance of the novel variant Omicron BF.7 lineage. Recently, it has been seeing the novel Omicron subtype BF.7 lineage has sprawled exponentially in Hohhot. More than anything, risk stratification is significant to ascertain patients infected with COVID-19 who the most need in-hospital or in-home management. The study intends to understand the clinical severity and epidemiological characteristics of COVID-19 Omicron subvariant BF.7. lineage via gathering and analyzing the cases with Omicron subvariant in Hohhot, Inner Mongolia. METHODS: Based upon this, we linked variant Omicron BF.7 individual-level information including sex, age, symptom, underlying conditions and vaccination record. Further, we divided the cases into various groups and assessed the severity of patients according to the symptoms of patients with COVID-19. Clinical indicators and data might help to predict disadvantage outcomes and progression among Omicron BF.7 patients. RESULTS: In this study, in patients with severe symptoms, some indicators from real world data such as white blood cells, AST, ALT and CRE in patients with Omicron BF.7 in severe symptoms were significantly higher than mild and asymptomatic patients, while some indicators were significantly lower. CONCLUSIONS: Above results suggested that the indicators were associated with ponderance of clinical symptoms. Our survey emphasized the value of timely investigations of clinical data obtained by systemic study to acquire detailed information.


Subject(s)
COVID-19 , Humans , Retrospective Studies , COVID-19/epidemiology , Pandemics , China/epidemiology , Public Health
11.
Int J Biol Macromol ; 254(Pt 1): 127555, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865372

ABSTRACT

Starch aging in starchy foods is a major problem affecting their quality. In order to improve the viscosity and textural properties of native starch gelatinization and retrogradation, this study investigated the effect of hyaluronic acid (HA) at different concentrations (2 %, 4 %, 6 % w/w) on the pasting and microstructure of corn starch (CS). The findings revealed that the addition of HA significantly enhanced the peak viscosity, solubility, and water-holding capacity of the CS-HA mixtures. Moreover, it reduced the pasting temperature, swelling force, and leaching of amylose. All the mixtures exhibited shear thinning and thixotropic properties. The CS-HA mixtures created a thicker pseudoplastic system with significantly enhanced shear stability. The structures of the mixtures were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. It was observed that HA effectively inhibited short-term retrogradation of starch, enhanced the interaction between CS and HA, and formed a dense honeycomb three-dimensional mesh structure. In conclusion, as a novel anionic hydrocolloid, HA holds great potential to improve the retrogradation properties of starch-based products.


Subject(s)
Starch , Zea mays , Starch/chemistry , Zea mays/chemistry , Hyaluronic Acid , Amylose/chemistry , Temperature , Viscosity
12.
Small ; : e2309022, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38084449

ABSTRACT

Seeking organic cathode materials with low cost and long cycle life that can be employed for large-scale energy storage remains a significant challenge. This work has synthesized an organic compound, triphenazino[2,3-b](1,4,5,8,9,12-hexaazatriphenylene) (TPHATP), with as high as 87.16% yield. This compound has a highly π-conjugated and rigid molecular structure, which is synthesized by capping hexaketocyclohexane with three molecules of 2,3-diaminophenazine derived from low-cost o-phenylenediamine, and is used as a cathode material for assembling aqueous rechargeable zinc ion batteries. Both experiments and DFT calculations demonstrate that the redox mechanism of TPHATP is predominantly governed by H+ storage. The Zn-intercalation product of nitride-type compound, is too unstable to form in water. Moreover, the TPHATP cathode exhibits a capacity of as high as 318.3 mAh g-1 at 0.1 A g-1 , and maintained a stable capacity of 111.9 mAh g-1 at a large current density of 10 A g-1 for 5000 cycles with only a decay of 0.000512% per cycle. This study provides new insights into understanding pyrazine as an active redox group and offers a potential affordable aqueous battery system for grid-scale energy storage.

13.
Front Immunol ; 14: 1265959, 2023.
Article in English | MEDLINE | ID: mdl-37818373

ABSTRACT

Background: The optimal local treatment for HCC with tumor diameter ≥ 5 cm is not well established. This research evaluated the effectiveness of external beam radiation therapy (EBRT) versus transcatheter arterial chemoembolization (TACE) for HCC with tumor diameter ≥ 5 cm. Methods: A total of 1210 HCC patients were enrolled in this study, including 302 and 908 patients that received EBRT and TACE, respectively. Propensity score matching (PSM) was used to identify patient pairs with similar baseline characteristics. Overall survival (OS) was the primary study endpoint. Results: We identified 428 patients using 1:1 PSM for survival comparison. Compared with the TACE group, the EBRT group had a significantly longer median OS (mOS) before (14.9 vs. 12.3 months, p = 0.0085) and after (16.8 vs. 11.4 months, p = 0.0026) matching. In the subgroup analysis, compared with the TACE group, the EBRT group had a significantly longer mOS for HCC with tumor diameters of 5-7 cm (34.1 vs. 14.3 months, p = 0.04) and 7-10 cm (34.4 vs. 10 months, p = 0.00065), whereas for HCC with tumor diameters ≥ 10 cm, no significant difference in mOS was observed (11.2 vs. 11.2 months, p = 0.83). In addition, the multivariable Cox analysis showed that Child-A, alkaline phosphatase < 125 U/L, and EBRT were independent prognostic indicators for longer survival. Conclusion: EBRT is more effective than TACE as the primary local treatment for HCC with tumor diameter ≥ 5 cm, especially for HCC with tumor diameter of 5-10 cm.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Combined Modality Therapy , Retrospective Studies
14.
Urol J ; 20(5): 318-328, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37667572

ABSTRACT

PURPOSE: Much progress has been made by directing against the adrogen receptor (AR) pathway in the treatment of prostate cancer in past decades. However, AR-interactors related metastatic castration resistant prostate cancer eventually developed. Here, we aimed to characterize the aberrations and therapeutic implication in advanced disease. MATERIALS AND METHODS: STRING database, UALCAN web portal and cBioPortal platform was used to analyze the AR interaction network, gene alterations, as well as the prognostic significance. GO and KEEG analysis was performed to characterize the functional enrichment of the identified AR-interactors. RESULTS: Ten first shell AR-interactors were identified, among of which FOXA1 and PELP1 was significantly up-regulated, while CCND1, CTNNB1, NCOA4 and HSP90AA1 exhibited a significantly decreased pattern. The median survival period of altered group (n = 227) was 70 months (95% CI, 60-105M), while that of non-altered group (n = 545) was 141 months (95% CI, 115.13-NA, P < 0.001). GO and KEGG enrichment showed that the identified AR-interactors were particularly enriched in prostate cancer and thyroid hormone signaling pathway, as well as endocrine resistance. CONCLUSION: The AR-interactors might be useful markers for prostate cancer diagnosis and prognosis, and provide a new sight for revealing the molecular mechanism of CRPC progression.

15.
PhytoKeys ; 230: 115-130, 2023.
Article in English | MEDLINE | ID: mdl-37588040

ABSTRACT

Our first record of the rare and scatteredly distributed Ixeridiumsagittarioides for Guizhou, China, triggered a study to assess its systematic position. The species was placed in four different genera in the course of its taxonomic history and was recently treated with doubts as a member of Ixeridium in the Flora of China. Comparative morphological investigation and phylogenetic analyses based on the nuclear ribosomal DNA internal transcribed spacer (nrITS) and five non-coding plastid DNA regions (petD region, psbA-trnH, trnL-trnF, rpl32-trnL (UAG) and 5´rps16-trnQ (UUG) spacers) provided evidence that the species is not a member of Ixeridium and the Crepidinae but has evolved by ancient hybridisation of members of the Lactuca alliance (Lactucinae). It is reinstated as Lactucasagittarioides and a comprehensive morphological description is provided, based on material from its entire range of distribution.

16.
J Chem Inf Model ; 63(16): 5297-5308, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37586058

ABSTRACT

The Omicron lineage of SARS-CoV-2, which was first reported in November 2021, has spread globally and become dominant, splitting into several sublineages. Experiments have shown that Omicron lineage has escaped or reduced the activity of existing monoclonal antibodies, but the origin of escape mechanism caused by mutation is still unknown. This work uses molecular dynamics and umbrella sampling methods to reveal the escape mechanism of BA.1.1 to monoclonal antibody (mAb) Tixagevimab (AZD1061) and BA.5 to mAb Cilgavimab (AZD8895), both mAbs were combined to form antibody cocktail, Evusheld (AZD7442). The binding free energy of BA.1.1-AZD1061 and BA.5-AZD8895 has been severely reduced due to multiple-site mutated Omicron variants. Our results show that the two Omicron variants, which introduce a substantial number of positively charged residues, can weaken the electrostatic attraction between the receptor binding domain (RBD) and AZD7442, thus leading to a decrease in affinity. Additionally, using umbrella sampling along dissociation pathway, we found that the two Omicron variants severely impaired the interaction between the RBD of SARS-CoV-2's spike glycoprotein (S protein) and complementary determining regions (CDRs) of mAbs, especially in CDR3H. Although mAbs AZD8895 and AZD1061 are knocked out by BA.5 and BA.1.1, respectively, our results confirm that the antibody cocktail AZD7442 retains activity against BA.1.1 and BA.5 because another antibody is still on guard. The study provides theoretical insights for mAbs interacting with BA.1.1 and BA.5 from both energetic and dynamic perspectives, and we hope this will help in developing new monoclonals and combinations to protect those unable to mount adequate vaccine responses.


Subject(s)
COVID-19 , Immune Evasion , COVID-19/immunology , Computer Simulation , Humans , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Hydrogen Bonding
17.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37598423

ABSTRACT

The latent features extracted from the multiple sequence alignments (MSAs) of homologous protein families are useful for identifying residue-residue contacts, predicting mutation effects, shaping protein evolution, etc. Over the past three decades, a growing body of supervised and unsupervised machine learning methods have been applied to this field, yielding fruitful results. Here, we propose a novel self-supervised model, called encoder-transformation layer-decoder (ETLD) architecture, capable of capturing protein sequence latent features directly from MSAs. Compared to the typical autoencoder model, ETLD introduces a transformation layer with the ability to learn inter-site couplings, which can be used to parse out the two-dimensional residue-residue contacts map after a simple mathematical derivation or an additional supervised neural network. ETLD retains the process of encoding and decoding sequences, and the predicted probabilities of amino acids at each site can be further used to construct the mutation landscapes for mutation effects prediction, outperforming advanced models such as GEMME, DeepSequence and EVmutation in general. Overall, ETLD is a highly interpretable unsupervised model with great potential for improvement and can be further combined with supervised methods for more extensive and accurate predictions.


Subject(s)
Neural Networks, Computer , Proteins , Proteins/genetics , Proteins/chemistry , Unsupervised Machine Learning , Amino Acids/genetics , Mutation
18.
Adv Healthc Mater ; 12(30): e2300746, 2023 12.
Article in English | MEDLINE | ID: mdl-37632326

ABSTRACT

There is an urgent need to develop a series of multifunctional materials with good biocompatibility, high mechanical strength, hemostatic properties, antiadhesion, and anti-infection for applications in wound care. However, successfully developing multifunctional materials is challenging. In this study, two superhydrophobic composite coatings with good biocompatibility, high mechanical strength, strong antifouling and blood repellency, fast hemostasis, and good antibacterial activity are prepared on cotton fabric surface by simple, green, and low-cost one-step dip-coating technology. The results discussed in the manuscript reveals that the two superhydrophobic composite coatings can maintain good mechanical stability, strong water repellency, and durability under various types of mechanical damage, high-temperature treatment, and long-term strong light irradiation. The coatings also exhibit good repellency to various solid pollutants, highly viscous liquid pollutants, and blood. In vitro and in vivo hemostatic experiments show that both composite coatings have good hemostatic and anticlot adhesion properties. More importantly, this superhydrophobic coating prevents bacterial adhesion and growth and released Cu2+ and Zn2+ ions and chitosan to achieve bactericidal properties, thereby protecting injured skin from bacterial infection. The two superhydrophobic coatings enhance the antifouling, antiadhesion, hemostatic, and antibacterial functions of blood-repellent dressings and therefore have broad application prospects in medical and textile fields.


Subject(s)
Chitosan , Environmental Pollutants , Hemostatics , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc
19.
Heliyon ; 9(8): e18619, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37554842

ABSTRACT

Bread and soup are two of the most important foods in daily life, thus dough fermentation and nutrient soup elaboration are more and more popular, but there is a lack of relevant low-cost and high-reliable household appliances on the market. Therefore, this paper proposes automatic control methods for dough fermentation and nutrient soup elaboration based on a special microwave oven. Fermentation theory, run-up microwave fermentation principle, microwave extraction principle, NTC temperature probe design and scalable fuzzy control algorithm are described in detail. Besides, the experimental platform is set up with a temperature chamber, an optical fiber thermometer and a power meter. Experimental results demonstrate that the relationship between the heating time and flour's mass is linear. For different ambient temperature tests, the volume ratios of the fermented dough to unfermented dough of different cases range from 2.2 to 2.62, and the inside of the dough after fermentation is fluffy, with small and dense cavities. Meanwhile, there is no acid taste and skin dryness, and the power consumption of microwave fermentation is less than half of that induced by grill, convection or steam fermentation. The detection error of the NTC temperature probe with microwave shielded is 0.48 °C, and the control error of the closed loop system is less than 0.5 °C. The temperature-rise slope of water is lower than that of ingredient, and the water's temperature is about 1 °C less than that of the ingredient. The soup after microwave elaboration is amber and clear, the ingredients are intact, the water loss is less than 50 g, and the total power consumption is 684 Wh. In short, microwave-based control methods for dough fermentation and nutrient soup elaboration are effective.

20.
J Oleo Sci ; 72(8): 745-754, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37468273

ABSTRACT

Although partially hydrogenated oil (PHO) provides foods with outstanding thick tastes and pronounced "creamy" flavor, the high level of artificial trans-fatty acids (TFA; about 30%) limits its usages around the world in the near future. It is necessary to produce trans-free alternatives with similar tastes to PHO. The relationship between sensory attributes and physicochemical characteristics of PHO and four typical specialty fats were therefore analyzed in the present study. PHO exhibited the highest greasiness score (8.19), accompanying by mild creaminess and aftertaste as well as a weak coolness during swallow, which were resulted from the close-packed arrangements of TFA, its cis-counterparts and other long chain fatty acids. None of artificial trans-fats, mainly anhydrous milk fat, cocoa butter, and coconut oil and its fully hydrogenated counterpart, were similar to PHO in terms of these sensory attributes. The unique fatty acid species of PHO and their arrangements contributed to the relatively smooth solid fat content profile and melting-crystallization curve, as well as forming uniform and dense ß' crystal-structures (Db=1.80). The Pearson correlation analyses relevelled that long chain fatty acids, e.g., t-C18:1 and C18:1, and melting final temperatures were generally positive correlated with greasiness, creaminess and aftertaste; whereas these indices were negatively correlated with coolness. The melting enthalpy was highly connected with coolness, which reflected the endothermic effectiveness during the melting process of fats in the mouth. These indices screened by correlation analyses that were strongly correlated with sensory attributes could provide references for producing trans-free alternatives.


Subject(s)
Plant Oils , Trans Fatty Acids , Plant Oils/chemistry , Dietary Fats , Fatty Acids/analysis , Fats , Coconut Oil , Trans Fatty Acids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...