Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Genes (Basel) ; 15(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39062629

ABSTRACT

The epidermal cells of insects are polarized epithelial cells that play a pivotal role in the insect's molting process. Sinuous, a pivotal structural protein involved in the formation of septate junctions among epithelial cells, is essential for its physiological function. In this study, to determine whether sinuous participates in the regulation of insect molting, we identified the sinuous gene, Lmsinu, in Locusta migratoria, which encodes a protein belonging to the claudin family and shares 62.6% identity with Drosophila's sinuous protein. Lmsinu is expressed in multiple tissues, and its expression level in the integument significantly increases prior to molting. Knockdown of Lmsinu in L. migratoria results in larval mortality during molting. Furthermore, hematoxylin and eosin and chitin staining demonstrate that the downregulation of Lmsinu led to a prolonged degradation process of the old cuticle during the molting process. Electron microscopy analysis further revealed that knockdown of Lmsinu disrupts the formation of septate junctions among epidermal cells, which are a monolayer of polarized epithelial cells, which may hinder the functionality of epidermal cells during the process of molting. In summary, these findings suggest that Lmsinu plays a role in nymph molting by regulating the formation of septate junctions among epidermal cells.


Subject(s)
Claudins , Insect Proteins , Locusta migratoria , Molting , Animals , Molting/genetics , Locusta migratoria/genetics , Locusta migratoria/metabolism , Locusta migratoria/growth & development , Insect Proteins/genetics , Insect Proteins/metabolism , Claudins/genetics , Claudins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Gene Expression Regulation, Developmental
2.
Cells ; 13(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39056781

ABSTRACT

Glypicans are closely associated with organ development and tumorigenesis in animals. Dally-like (Dlp), a membrane-bound glypican, plays pivotal roles in various biological processes in Drosophila. In this study, we observed that an excess of Dlp led to the malformation of legs, particularly affecting the distal part. Accordingly, the leg disc was shrunken and frequently exhibited aberrant morphology. In addition, elevated Dlp levels induced ectopic cell death with no apparent cell proliferation changes. Furthermore, Dlp overexpression in the posterior compartment significantly altered Wingless (Wg) distribution. We observed a marked expansion of Wg distribution within the posterior compartment, accompanied by a corresponding decrease in the anterior compartment. It appears that excess Dlp guides Wg to diffuse to cells with higher Dlp levels. In addition, the distal-less (dll) gene, which is crucial for leg patterning, was up-regulated significantly. Notably, dachshund (dac) and homothorax (hth) expression, also essential for leg patterning and development, only appeared to be negligibly affected. Based on these findings, we speculate that excess Dlp may contribute to malformations of the distal leg region of Drosophila, possibly through its influence on Wg distribution, dll expression and induced cell death. Our research advances the understanding of Dlp function in Drosophila leg development.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Wnt1 Protein/metabolism , Wnt1 Protein/genetics , Extremities/pathology , Extremities/embryology , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Transcription Factors/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics
3.
Pestic Biochem Physiol ; 202: 105934, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879326

ABSTRACT

Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.


Subject(s)
Feeding Behavior , Insect Proteins , Intestinal Mucosa , Locusta migratoria , Qa-SNARE Proteins , Locusta migratoria/genetics , Locusta migratoria/growth & development , Locusta migratoria/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Intestinal Mucosa/growth & development , Insect Proteins/genetics , Insect Proteins/metabolism , Feeding Behavior/physiology , Gene Knockdown Techniques , Sequence Homology, Amino Acid , Tissue Distribution , Body Weight/genetics , Gene Expression Regulation, Developmental
4.
Pestic Biochem Physiol ; 201: 105860, 2024 May.
Article in English | MEDLINE | ID: mdl-38685214

ABSTRACT

The Osiris gene family is believed to play important roles in insect biology. Previous studies mainly focused on the roles of Osiris in Drorophila, how Osiris operates during the development of other species remains largely unknown. Here, we investigated the role of LmOsi17 in development of the hemimetabolous insect Locusta migratoria. LmOsi17 was highly expressed in the intestinal tract of nymphs. Knockdown of LmOsi17 by RNA interference (RNAi) in nymphs resulted in growth defects. The dsLmOsi17-injected nymphs did not increase in body weight or size and eventually died. Immunohistochemical analysis showed that LmOsi17 was localized to the epithelial cells of the foregut and the gastric caecum. Histological observation and hematoxylin-eosin staining indicate that the foregut and gastric caecum are deformed in dsLmOsi17 treated nymphs, suggesting that LmOsi17 is involved in morphogenesis of foregut and gastric caecum. In addition, we observed a significant reduction in the thickness of the new cuticle in dsLmOsi17-injected nymphs compared to control nymphs. Taken together, these results suggest that LmOsi17 contributes to morphogenesis of intestinal tract that affects growth and development of nymphs in locusts.


Subject(s)
Insect Proteins , Locusta migratoria , Morphogenesis , Nymph , Animals , Locusta migratoria/growth & development , Locusta migratoria/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Nymph/growth & development , RNA Interference , Intestines
5.
Insects ; 15(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667367

ABSTRACT

Fushi-tarazu factor 1 (FTZ-F1) is a class of transcription factors belonging to the nuclear receptor superfamily and an important molting regulator in insects; however, its detailed function in the molting process of Locusta migratoria is still unclear. This study identified two FTZ-F1 transcripts (LmFTZ-F1-X1 and LmFTZ-F1-X2) in L. migratoria. The classical domains of FTZ-F1 were present in their protein sequences and distinguished based on their variable N-terminal domains. Reverse-transcription quantitative polymerase chain reaction analysis revealed that LmFTZ-F1-X1 and LmFTZ-F1-X2 were highly expressed in the integument. RNA interference (RNAi) was used to explore the function of LmFTZ-F1s in the molting of the third-instar nymph. Separate LmFTZ-F1-X1 or LmFTZ-F1-X2 silencing did not affect the normal development of third-instar nymphs; however, the simultaneous RNAi of LmFTZ-F1-X1 and LmFTZ-F1-X2 caused the nymphs to be trapped in the third instar stage and finally die. Furthermore, the hematoxylin-eosin and chitin staining of the cuticle showed that the new cuticles were thickened after silencing the LmFTZ-F1s compared to the controls. RNA-seq analysis showed that genes encoding four cuticle proteins, two chitin synthesis enzymes, and cytochrome P450 303a1 were differentially expressed between dsGFP- and dsLmFTZ-F1s-injected groups. Taken together, LmFTZ-F1-X1 and LmFTZ-F1-X2 are involved in the ecdysis of locusts, possibly by regulating the expression of genes involved in cuticle formation, chitin synthesis, and other key molting processes.

6.
Huan Jing Ke Xue ; 45(3): 1665-1673, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471878

ABSTRACT

Changes in soil nitrogen components in tea gardens affect the soil nitrogen supply capacity and nitrogen cycle. In this study, soil samples were collected from forest land, cultivated land, and tea gardens with different plantation ages (30, 50, and 70 years) to explore the changes in soil nitrogen components and their relationship with physicochemical properties and enzyme activities. The results showed that:① with the increase in tea plantation age, the silt, total phosphorus, and urease and catalase activities gradually increased, whereas the sand, clay, pH, electrical conductivity, soil organic carbon, and the activities of invertase gradually decreased. The alkaline phosphatase activity increased first and then decreased with the increase in tea plantation age, and no significant differences were observed in soil water content and acid phosphatase activity. ② With the increase in tea plantation age, the contents of acid ammonia nitrogen, amino acid nitrogen, and nitrate nitrogen (NO3--N) increased significantly, and the contents of total nitrogen, acid ammonia nitrogen, hydrolyzable unknown nitrogen, and non-hydrolyzable nitrogen in tea gardens were significantly higher than those in forest land. ③ The total phosphorus, alkaline phosphatase, and urease were the main factors affecting soil nitrogen components. Among them, organic nitrogen components were significantly correlated with total phosphorus and alkaline phosphatase, and inorganic nitrogen components were significantly correlated with alkaline phosphatase, whereas total nitrogen had significant correlations with sand, silt, total phosphorus, urease, and alkaline phosphatase.


Subject(s)
Alkaline Phosphatase , Soil , Soil/chemistry , Sand , Nitrogen/analysis , Carbon , Urease , Ammonia , Phosphorus/analysis , Tea , Soil Microbiology , China
7.
Insect Biochem Mol Biol ; 168: 104114, 2024 May.
Article in English | MEDLINE | ID: mdl-38552809

ABSTRACT

The Drosophila hindgut is a classical model to study organogenesis. The adult hindgut originates from the precursor cells in the larval hindgut. However, the territory of these cells has still not been well determined. A ring of wingless (wg)-expressing cells lies at the anterior zone of both the larval and adult hindgut. The larval Wg ring was thought as a portion of precursor of the adult hindgut. By applying a cell lineage tracing tool (G-TRACE), we demonstrate that larval wg-expressing cells have no cell lineage contribution to the adult hindgut. Additionally, adult Wg ring cells do not divide and move posteriorly to replenish the hindgut tissue. Instead, we determine that the precursors of the adult pylorus and ileum are situated in the cubitus interruptus (ci)-expressing cells in the anterior zone, and deduce that the precursor stem cells of the adult rectum locate in the trunk region of the larval pylorus including hedgehog (hh)-expressing cells. Together, this research advances our understanding of cell lineage origins and the development of the Drosophila hindgut.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Larva/genetics , Larva/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Wnt1 Protein , Hedgehog Proteins/genetics , Gene Expression Regulation, Developmental
8.
Insect Sci ; 31(3): 748-758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445520

ABSTRACT

Lipid homeostasis is crucial for growth and development of organisms. Several cytochrome P450 monooxygenases (CYPs) are involved in lipid metabolism. The function of Cyp311a1 in the anterior midgut as a regulator of phosphatidylethanolamine (PE) metabolism in Drosophila melanogaster has been demonstrated, as depletion of Cyp311a1 caused larval growth arrest that was partially rescued by supplying PE. In this study, we investigated the role of CYP311A1 in wing morphogenesis in Drosophila. Using the GAL4-UAS system, Cyp311a1 was selectively knocked down in the wing disc. A deformed wing phenotype was observed in flies with reduced Cyp311a1 transcripts. BODIPY and oil red O staining revealed a reduction of neutral lipids in the wing disc after the depletion of Cyp311a1. In addition, we observed an enhanced sensitivity to Eosin Y penetration in the wings of Cyp311a1 knocked-down flies. Moreover, the reduction of CYP311A1 function in developing wings does not affect cell proliferation and apoptosis, but entails disordered Phalloidin or Cadherin distribution, suggesting an abnormal cell morphology and cell cortex structure in wing epithelial cells. Taken together, our results suggest that Cyp311a1 is needed for wing morphogenesis by participating in lipid assembly and cell homeostasis.


Subject(s)
Cytochrome P-450 Enzyme System , Drosophila Proteins , Drosophila melanogaster , Wings, Animal , Animals , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Wings, Animal/growth & development , Wings, Animal/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Morphogenesis , Larva/growth & development , Larva/genetics , Larva/metabolism , Lipid Metabolism
9.
Int J Biol Macromol ; 266(Pt 2): 131137, 2024 May.
Article in English | MEDLINE | ID: mdl-38537854

ABSTRACT

The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.


Subject(s)
Digestive System , Gastrointestinal Tract , Locusta migratoria , Monomeric GTP-Binding Proteins , Pest Control, Biological , RNA Interference , Vesicular Transport Proteins , Animals , Digestive System/growth & development , Endoplasmic Reticulum , Gene Knockdown Techniques , Homeostasis , Locusta migratoria/genetics , Locusta migratoria/growth & development , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Pest Control, Biological/methods , Protein Multimerization , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Male , Female , Gastrointestinal Tract/growth & development
10.
Int J Biol Macromol ; 263(Pt 2): 130245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367779

ABSTRACT

The dynamic adhesion between cells and their extracellular matrix is essential for the development and function of organs. During insect wing development, two epithelial sheets contact each other at their basal sites through the interaction of ßPS integrins with the extracellular matrix. We report that Osiris17 contributes to the maintenance of ßPS integrins localization and function in developing wing of Drosophila and locust. In flies with reduced Osiris17 expression the epithelia sheets fail to maintain the integrity of basal cytoplasmic junctional bridges and basal adhesion. In contrast to the continuous basal integrin localization in control wings, this localization is disrupted during late stages of wing development in Osiris17 depleted flies. In addition, the subcellular localization revealed that Osiris17 co-localizes with the endosomal markers Rab5 and Rab11. This observation suggests an involvement of Osiris17 in endosomal recycling of integrins. Indeed, Osiris17 depletion reduced the numbers of Rab5 and Rab11 positive endosomes. Moreover, overexpression of Osiris17 increased co-localization of Rab5 and ßPS integrins and partially rescued the detachment phenotype in flies with reduced ßPS integrins. Taken together, our data suggest that Osiris17 is an endosome related protein that contributes to epithelial remodeling and morphogenesis by assisting basal integrins localization in insects.


Subject(s)
Drosophila Proteins , Integrins , Animals , Integrins/metabolism , Drosophila/genetics , Epithelium/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Extracellular Matrix/metabolism
11.
Huan Jing Ke Xue ; 45(1): 386-395, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216488

ABSTRACT

Spatial prediction of the concentrations of soil heavy metals (HMs) in cultivated land is critical for monitoring cultivated land contamination and ensuring sustainable eco-agriculture. In this study, 32 environmental variables from terrain, climate, soil attributes, remote-sensing information, vegetation indices, and anthropogenic activities were used as auxiliary variables, and random forest (RF), regression Kriging (RK), ordinary Kriging (OK), and multiple linear regression (MLR) models were proposed to predict the concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in cultivated soils. In comparison to those of RK, OK, and MLR, the RF model had the best prediction performance for As, Cd, Cr, Hg, Pb, and Zn, whereas the OK and RK models had highest prediction performance for Cu and Ni, respectively, showing that R2 was the highest, and mean absolute error (MAE) and root mean square error (RMSE) were the lowest. The prediction performance of the spatial distribution of soil HMs under different prediction methods was basically consistent. The high value areas of eight HMs concentrations were all distributed in the southern plain area. However, the RF model depicted the details of spatial prediction more prominently. Moreover, the importance ranking of influencing factors derived from the RF model indicated that the spatial variation in concentrations of the eight HMs in Lanxi City were mainly affected by the combined effects of Se, TN, pH, elevation, annual average temperature, annual average rainfall, distance from rivers, and distance from factories. Given the above, random forest models could be used as an effective method for the spatial prediction of soil heavy metals, providing scientific reference for regional soil pollution investigation, assessment, and management.

12.
Insect Sci ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214184

ABSTRACT

The foregut, located at the front of the digestive tract, serves a vital role in insects by storing and grinding food into small particles. The innermost layer of the foregut known as the chitinous intima, comes into direct contact with the food and acts as a protective barrier against abrasive particles. Knickkopf (Knk) is required for chitin organization in the chitinous exoskeleton, tracheae and wings. Despite its significance, little is known about the biological function of Knk in the foregut. In this study, we found that LmKnk was stably expressed in the foregut, and highly expressed before molting in Locusta migratoria. To ascertain the biological function of LmKnk in the foregut, we synthesized specific double-stranded LmKnk (dsLmKnk) and injected it into locusts. Our findings showed a significant decrease in the foregut size, along with reduced food intake and accumulation of residues in the foregut after dsLmKnk injection. Morphological observations revealed that newly formed intima became thinner and lacked chitin lamella. Furthermore, fluorescence immunohistochemistry revealed that LmKnk was located in the apical region of new intima and epithelial cells. Taken together, this study provides insights into the biological function of LmKnk in the foregut, and identifies the potential target gene for exploring biological pest management strategies.

13.
Sci Rep ; 13(1): 21467, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38052944

ABSTRACT

This study examined the relationship between family capital (FC) and academic achievement in geography along with the mediating role of creativity. The main objective was to determine if FC is a positive predictor of creativity and geographic achievement, and whether creativity completely or partially mediates the relationship between FC and geographic achievement. 1268 high school students participated in this study using the Family Capital Questionnaire (FCQ), the Innovative Behavior Scale (IBS), and students' class geography scores. SPSS 26 and Amos software were used to analyze the descriptive statistics and the correlation between the main variables. The mediating role of creativity was tested using PROCESS version 4. The correlation analyses showed that FC positively affected academic achievement in geography (ß = 0.382, SE = 0.019). Creativity also demonstrated a positive effect on geography academic achievement (ß = 0.376, SE = 0.022). The mediation analysis showed that creativity mediated and buffered the relationship between FC and academic achievement in geography. Thus, FC directly affected students' academic achievement in geography and indirectly affected their creativity. This clearly demonstrates that student characteristics and the external environment should be emphasized in geography education, while placing a strong focus on cultivating individual creativity.


Subject(s)
Academic Success , Humans , Educational Status , Students , Geography , Mediation Analysis
14.
BMC Psychol ; 11(1): 432, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062494

ABSTRACT

BACKGROUND: Although previous studies have found a close relationship between sense of place and creativity, few studies have been conducted considering the micro-environment of the classroom. The mediating role of classmate relationships in the association between students' sense of place and creativity remains unclear. METHODS: This study explores classmate relationships as a mediating factor in the relationship between sense of place and creativity. Therefore, we considered a sample of 1555 Chinese high-school students and used a paper-based questionnaire survey. Data analysis was performed using SPSS 24.0, PROCESS 3.2 plugin, and AMOS. RESULTS: Sense of place in the micro-environment of the classroom has a significant positive predictive effect on creativity. Sense of place also has a significant positive predictive effect on peer relationships. The mediation analysis reveals that peer relationships play a mediating role in the relationship between the sense of place and creativity. CONCLUSIONS: This study revealed the associations between sense of place, classmate relationships, and creativity. Creativity is better expressed in students with a strong sense of place in the classroom. Moreover, a student's sense of place can enhance their creativity by influencing their peer relationships. These findings enrich the research in educational psychology within the classroom, providing new insights for fostering creativity.


Subject(s)
Creativity , Peer Group , Students , Humans , Students/psychology , East Asian People
15.
Pestic Biochem Physiol ; 196: 105620, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945256

ABSTRACT

Cytochrome P450 monooxygenases (P450s) are a superfamily of multifunctional heme-containing proteins and could function as odorant-degrading enzymes (ODEs) in insect olfactory systems. In our previous study, we identified a P450 gene from the antennal transcriptome of Locusta migratoria, LmCYP6MU1, which could be induced by a variety of volatiles. However, the regulatory mechanisms of this gene in response to volatiles remain unknown. In current study, we investigated the tissues and development stages expression patterns of LmCYP6MU1 and determined its olfactory function in the recognition of the main host plant volatiles which induced LmCYP6MU1 expression. The results showed that LmCYP6MU1 was antenna-rich and highly expressed throughout the antennal developmental stages of locusts. LmCYP6MU1 played important roles in the recognition of trans-2-hexen-1-al and nonanal. Insect CncC regulates the expression of P450 genes. We tested whether LmCncC regulates LmCYP6MU1 expression. It was found that LmCncC knockdown in the antennae resulted in the downregulation of LmCYP6MU1 and repressed the volatiles-mediated induction of LmCYP6MU1. LmCncC knockdown reduced the electroantennogram (EAG) and behavioral responses of locusts to volatiles. These results suggested that LmCncC could regulate the basal and volatiles-mediated inducible expression of LmCYP6MU1 responsible for the recognition of trans-2-hexen-1-al and nonanal. These findings provide an original basis for understanding the regulation mechanisms of LmCncC on LmCYP6MU1 expression and help us better understand the LmCncC-mediated olfactory plasticity.


Subject(s)
Locusta migratoria , Animals , Locusta migratoria/genetics , Locusta migratoria/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Gene Expression Regulation , Insect Proteins/genetics , Insect Proteins/metabolism , Arthropod Antennae/metabolism
16.
Pestic Biochem Physiol ; 196: 105627, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945261

ABSTRACT

BACKGROUND: The cap 'n' collar (Cnc) belongs to the Basic Leucine Zipper (bZIP) transcription factor super family. Cap 'n' collar isoform C (CncC) is highly conserved in the animal kingdom. CncC contributes to the regulation of growth, development, and aging and takes part in the maintenance of homeostasis and the defense against endogenous and environmental stress. Insect CncC participates in the regulation of various kinds of stress-responsive genes and is involved in the development of insecticide resistance. RESULTS: In this study, one full-length CncC sequence of Locusta migratoria was identified and characterized. Upon RNAi silencing of LmCncC, insecticide bioassays showed that LmCncC played an essential role in deltamethrin and imidacloprid susceptibility. To fully investigate the downstream genes regulated by LmCncC and further identify the LmCncC-regulated genes involved in deltamethrin and imidacloprid susceptibility, a comparative transcriptome was constructed. Thirty-five up-regulated genes and 73 down-regulated genes were screened from dsLmCncC-knockdown individuals. We selected 22 LmCncC-regulated genes and verified their gene expression levels using RT-qPCR. Finally, six LmCYP450 genes belonging to the CYP6 family were selected as candidate detoxification genes, and LmCYP6FD1 and LmCYP6FE1 were further validated as detoxification genes of insecticides via RNAi, insecticide bioassays, and metabolite identification. CONCLUSIONS: Our data suggest that the locust CncC gene is associated with deltamethrin and imidacloprid susceptibility via the regulation of LmCYP6FD1 and LmCYP6FE1, respectively.


Subject(s)
Insecticides , Locusta migratoria , Humans , Animals , Insecticides/pharmacology , Insecticides/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Locusta migratoria/genetics , Locusta migratoria/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
17.
J Environ Manage ; 347: 119142, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37804631

ABSTRACT

Macroporous ion exchange resin has excellent selectivity to nitrogen (N), phosphorus (P) and partially soluble refractory organic compounds contained in the secondary effluent of wastewater treatment plants (WWTP). In this study, macroporous ion exchange resins were chosen as an alternative to single biochemical nitrogen removal processes. Various conditions were examined to optimize adsorption performance, and the adsorption mechanism was explored through isotherm fitting, thermodynamic parameter calculation, and kinetic analysis. The experiment demonstrated that the resin exhibited strong selectivity for nitrate (NO3-) and achieved an equilibrium adsorption amount of 9.8924 mg/g and an equilibrium adsorption time of 60 min at 25 °C. The resin denitrification pilot plant demonstrated stable operation for two months and achieved COD<20 mg/L, TN < 1.5 mg/L, and NH4+-N<0.5 mg/L. The removal rates of COD, TP, NH4+-N, NO3--N, and TN were 41.65%, 42.96%, 55.37%, 91.8%, and 90.81%, respectively. After the resin was regenerated, the removal rates of NO3--N, TN and the regeneration recovery rate were above 90%. Through cost analysis, the treatment cost of the pilot plant is only 0.104 $/m3. This study presents a practical, low-cost, and efficient treatment method for the deep treatment of secondary effluent from WWTP in practical engineering, providing new ideas and theoretical guidance.


Subject(s)
Ion Exchange Resins , Nitrates , Ion Exchange Resins/chemistry , Kinetics , Organic Chemicals , Thermodynamics , Nitrogen
18.
Kidney Int Rep ; 8(10): 2056-2067, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37850014

ABSTRACT

Introduction: Despite recognized geographic and sex-based differences in hemoglobin in the general population, these factors are typically ignored in patients with chronic kidney disease (CKD) in whom a single therapeutic range for hemoglobin is recommended. We sought to compare the distribution of hemoglobin across international nondialysis CKD populations and evaluate predictors of hemoglobin. Methods: In this cross-sectional study, hemoglobin distribution was evaluated in each cohort overall and stratified by sex and estimated glomerular filtration rate (eGFR). Relationships between candidate predictors and hemoglobin were assessed from linear regression models in each cohort. Estimates were subsequently pooled in a random effects model. Results: A total of 58,613 participants from 21 adult cohorts (median eGFR range of 17-49 ml/min) and 3 pediatric cohorts (median eGFR range of 26-45 ml/min) were included with broad geographic representation. Hemoglobin values varied substantially among the cohorts, overall and within eGFR categories, with particularly low mean hemoglobin observed in women from Asian and African cohorts. Across the eGFR range, women had a lower hemoglobin compared to men, even at an eGFR of 15 ml/min (mean difference 5.3 g/l, 95% confidence interval [CI] 3.7-6.9). Lower eGFR, female sex, older age, lower body mass index, and diabetic kidney disease were all independent predictors of a lower hemoglobin value; however, this only explained a minority of variance (R2 7%-44% across cohorts). Conclusion: There are substantial regional differences in hemoglobin distribution among individuals with CKD, and the majority of variance is unexplained by demographics, eGFR, or comorbidities. These findings call for a renewed interest in improving our understanding of hemoglobin determinants in specific CKD populations.

19.
Pestic Biochem Physiol ; 194: 105484, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532348

ABSTRACT

Jinggangmycin (JGM), an agricultural antibiotic compound, is mainly used against the rice sheath blight (RSB) Rhizoctonia solani. However, its application may lead to unexpected consequences in insects. In this study, the effects of JGM on the physiological parameters of Drosophila melanogaster were investigated. The results showed that 0.005 g/ml JGM exposure increased female daily egg production and extended the oviposition period, while there was no significant effect on reproduction at 0.016 g/ml. At the same time, desiccation tolerance increased in flies fed 0.005 g/ml JGM. The RT-qPCR results revealed that FAS1 and FAS3 expression were upregulated in 0.005 g/ml JGM treated flies. Consistently, the amount of CHCs accumulated on the cuticle surface increased upon JGM treatment at 0.005 g/ml. Moreover, RNAi for FAS3 decreased desiccation tolerance of JGM-treated flies. These results suggest that JGM affects fatty acid biosynthesis, which in turn enhances reproduction and desiccation tolerance in Drosophila.


Subject(s)
Desiccation , Drosophila melanogaster , Animals , Female , Drosophila melanogaster/genetics , Reproduction , Inositol/pharmacology
20.
Kidney Med ; 5(9): 100700, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37649728

ABSTRACT

Rationale & Objective: Little is known about hospital admissions in nondialysis patients with chronic kidney disease (CKD) before death or starting kidney replacement therapy (KRT). Study Design: Retrospective observational cohort study. Setting & Participants: Hospitalizations among 7,201 patients with CKD from 10 public renal clinics in Queensland (QLD), enrolled in the CKD.QLD registry starting in May 2011, were followed for 25,496.34 person-years until they started receiving KRT or died, or until June 30, 2018. Predictors: Demographic and clinical characteristics of patients with CKD. Outcomes: Hospital admissions. Analytical Approach: We evaluated the association of demographic and clinical features with hospitalizations, length of hospital stay, and cost. Results: Approximately 81.5% of the patients were admitted at least once, with 42,283 admissions, costing Australian dollars (AUD) 231 million. The average number of admissions per person-year was 1.7, and the cost was AUD 9,060, 10 times and 2 times their Australian averages, respectively. Single (1-day) admissions constituted 59.2% of all the hospital episodes, led by neoplasms (largely chemotherapy), anemia, CKD-related conditions and eye conditions (largely cataract extractions), but only 14.8% of the total costs. Approximately 41% of admissions were >1-day admissions, constituting 85.2% of the total costs, with cardiovascular conditions, respiratory conditions, CKD-related conditions, and injuries, fractures, or poisoning being the dominant causes. Readmission within 30 days of discharge constituted >42% of the admissions and 46.8% costs. Admissions not directly related to CKD constituted 90% of the admissions and costs. More than 40% of the admissions and costs were through the emergency department. Approximately 19% of the hospitalized patients and 27% of the admissions did not have kidney disease mentioned as either principal or associate causes. Limitations: Variable follow-up times because of different dates of consent. Conclusions: The hospital burden of patients with CKD is mainly driven by complex multiday admissions and readmissions involving comorbid conditions, which may not be directly related to their CKD. Strategies to prevent these complex admissions and readmissions should minimize hospital costs and outcomes. Plain-Language Summary: We analyzed primary causes, types, and costs of hospitalizations among 7,201 patients with chronic kidney disease (CKD) from renal speciality clinics across Queensland, Australia, over an average follow-up of 3.54 years. The average annual cost per person was $9,060, and was the highest in those with more advanced CKD, higher age, and with diabetes. More than 85% of costs were driven by more complex hospitalizations with longer length of stay. Cardiovascular disease was the single largest contributor for hospitalizations, length of hospital stay, and total costs. Readmission within 30 days of discharge, particularly for the same disorder, and multiday admissions should be the main targets for mitigation of hospital costs in this population.

SELECTION OF CITATIONS
SEARCH DETAIL
...