Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
1.
BMC Genomics ; 25(1): 485, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755540

ABSTRACT

BACKGROUND: Indigenous chickens were developed through a combination of natural and artificial selection; essentially, changes in genomes led to the formation of these modern breeds via admixture events. However, their confusing genetic backgrounds include a genomic footprint regulating complex traits, which is not conducive to modern animal breeding. RESULTS: To better evaluate the candidate regions under domestication in indigenous chickens, we considered both runs of homozygosity (ROHs) and selective signatures in 13 indigenous chickens. The genomes of Silkie feather chickens presented the highest heterozygosity, whereas the highest inbreeding status and ROH number were found in Luhua chickens. Short ROH (< 1 Mb), were the principal type in all chickens. A total of 291 ROH islands were detected, and QTLdb mapping results indicated that body weight and carcass traits were the most important traits. An ROH on chromosome 2 covering VSTM2A gene was detected in 12 populations. Combined analysis with the Tajima's D index revealed that 18 genes (e.g., VSTM2A, BBOX1, and RYR2) were under selection and covered by ROH islands. Transcriptional analysis results showed that RYR2 and BBOX1 were specifically expressed in the heart and muscle tissue, respectively. CONCLUSION: Based on genome-wide scanning for ROH and selective signatures, we evaluated the genomic characteristics and detected significant candidate genes covered by ROH islands and selective signatures. The findings in this study facilitated the understanding of genetic diversity and provided valuable insights for chicken breeding and conservation strategies.


Subject(s)
Chickens , Domestication , Homozygote , Animals , Chickens/genetics , Selection, Genetic , Quantitative Trait Loci , Genome , Genomics/methods , Polymorphism, Single Nucleotide
2.
Lancet Reg Health West Pac ; 45: 100992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699293

ABSTRACT

Over the last 20 years, the numbers, types, distribution, and qualifications of mental health professionals in China have changed dramatically. However, there has been no systematic attempt to collect information about this transformation in the human resources available to provide mental health services-information that needs to be regularly updated to improve the country's coordination of these services. This scoping review compiles current details about China's mental health workforce and identifies critical gaps in available research and reporting. We reviewed all relevant studies and reports published between 1 January 2000 and 30 June 2021 in two English-language and four Chinese-language databases, the website of China's National Health Commission, and national and provincial health services yearbooks. In addition to summarising data from government yearbooks, we integrated relevant results from 82 peer-reviewed publications and two government reports. From 2000 to 2020, the number of psychiatrists in the country increased by 139%, and the number of psychiatric nurses increased by 340%. However, the much higher ratio of mental health professionals per 100,000 population and the better quality of training of mental health professionals in urban, eastern provinces compared to rural, western provinces has not changed. Progress has been made in standardising the training of psychiatrists, but there are no standardised training programs for psychiatric nurses, clinical psychologists, or psychiatric social workers. Future research needs to address several issues that limit the effectiveness of policies aimed at increasing the size, quality and equitable distribution of China's mental health workforce: 1) limited data available about the numbers and characteristics of professionals who provide mental health services, 2) absence of nationally standardised training programs for non-psychiatric medical professionals and non-medical personnel who provide essential monitoring and supportive care to persons with mental illnesses, and 3) failure to scientifically assess the outcomes of currently available training programs.

3.
Redox Biol ; 73: 103183, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38759418

ABSTRACT

AIMS: Vascular calcification is strongly linked to the development of major adverse cardiovascular events, but effective treatments are lacking. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an emerging category of oral hypoglycemic drugs that have displayed marked effects on metabolic and cardiovascular diseases, including recently reported vascular medial calcification. However, the roles and underlying mechanisms of SGLT2 inhibitors in vascular calcification have not been fully elucidated. Thus, we aimed to further determine whether SGLT2 inhibitors protect against vascular calcification and to investigate the mechanisms involved. METHODS AND RESULTS: A computed tomography angiography investigation of coronary arteries from 1554 patients with type 2 diabetes revealed that SGLT2 inhibitor use was correlated with a lower Agatston calcification score. In the vitamin D3 overdose, 5/6 nephrectomy chronic kidney disease-induced medial calcification and Western diet-induced atherosclerotic intimal calcification models, dapagliflozin (DAPA) substantially alleviated vascular calcification in the aorta. Furthermore, we showed that DAPA reduced vascular calcification via Runx2-dependent osteogenic transdifferentiation in vascular smooth muscle cells (VSMCs). Transcriptome profiling revealed that thioredoxin domain containing 5 (TXNDC5) was involved in the attenuation of vascular calcification by DAPA. Rescue experiments showed that DAPA-induced TXNDC5 downregulation in VSMCs blocked the protective effect on vascular calcification. Furthermore, TXNDC5 downregulation disrupted protein folding-dependent Runx2 stability and promoted subsequent proteasomal degradation. Moreover, DAPA downregulated TXNDC5 expression via amelioration of oxidative stress and ATF6-dependent endoplasmic reticulum stress. Consistently, the class effects of SGLT2 inhibitors on vascular calcification were validated with empagliflozin in intimal and medial calcification models. CONCLUSIONS: SGLT2 inhibitors ameliorate vascular calcification through blocking endoplasmic reticulum stress-dependent TXNDC5 upregulation and promoting subsequent Runx2 proteasomal degradation, suggesting that SGLT2 inhibitors are potentially beneficial for vascular calcification treatment and prevention.

4.
Sci Rep ; 14(1): 10959, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745034

ABSTRACT

Molecular hydrogen is an emerging broad-spectrum antioxidant molecule that can be used to treat myocardial infarction (MI). However, with hydrogen inhalation, the concentration that can be reached within target organs is low and the duration of action is short, which makes it difficult to achieve high dose targeted delivery of hydrogen to the heart, seriously limiting the therapeutic potential of hydrogen for MI. As a result of reactions with the internal environment of the body, subcutaneous implantation of magnesium slices leads to continuous endogenous hydrogen production, leading to a higher hydrogen concentration and a longer duration of action in target organs. In this study, we propose magnesium implant-based hydrogen therapy for MI. After subcutaneous implantation of magnesium slices in the dorsum of rats, we measured hydrogen production and efficiency, and evaluated the safety of this approach. Compared with hydrogen inhalation, it significantly improved cardiac function in rats with MI. Magnesium implantation also cleared free radicals that were released as a result of mitochondrial dysfunction, as well as suppressing cardiomyocyte apoptosis.


Subject(s)
Hydrogen , Magnesium , Myocardial Infarction , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Magnesium/metabolism , Rats , Male , Rats, Sprague-Dawley , Apoptosis/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Disease Models, Animal
5.
Exp Eye Res ; 244: 109937, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782179

ABSTRACT

Sjögren's syndrome (SS) dry eye can cause ocular surface inflammation and lacrimal gland (LG) damage, leading to discomfort and potential vision problems. The existing treatment options for SS dry eye are currently constrained. We investigated the possible therapeutic effect and the underlying mechanism of AS101 in autoimmune dry eye. AS101 was injected subconjunctivally into a rabbit model of autoimmune dacryoadenitis and its therapeutic effects were determined by evaluating clinical and histological scores. The expressions of effector T cells (Teff)/regulatory T cells (Treg)-related transcription factors and cytokines, inflammation mediators, and transcription factor NFATc2 were measured by quantitative real-time PCR and/or Western blot both in vivo and in vitro. Additionally, the role of NFATc2 in the immunomodulatory effects of AS101 on T cells was explored by co-culturing activated peripheral blood lymphocytes (PBLs) transfected with NFATc2 overexpression lentiviral plasmid with AS101. AS101 treatment potently ameliorated the clinical severity and reduced the inflammation of LG. Further investigation revealed that AS101 treatment led to decreased expression of Th1-related genes (T-bet and IFN-γ) and Th17-related genes (RORC, IL-17A, IL-17F, and GM-CSF) and increased expression of Treg-related gene Foxp3 in vivo and in vitro. Meanwhile, AS101 suppressed the expression of TNF-α, IL-1ß, IL-23, IL-6, MMP-2, and MMP-9. Mechanistically, AS101 downregulated the expression of NFATc2 in inflamed LGs. Overexpression of NFATc2 in activated PBLs partially blunted the effect of AS101 on Teff suppression and Treg promotion. In conclusion, AS101 is a potential regulator of Teff/Treg cell balance and could be an effective treatment agent for SS dry eye.

6.
J Phys Chem A ; 128(18): 3539-3547, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38679886

ABSTRACT

The potentially carcinogenic halobenzoquinones (HBQs) have been recently identified in drinking water as disinfection byproducts. Several radical intermediates in the reaction of 2,5-dichloro-1,4-benzoquinone (DCBQ) and t-butyl hydroperoxide (t-BuOOH), which may induce DNA damage, were detected experimentally, and metal-independent decomposition reactions of t-BuOOH by DCBQ were proposed. It has not yet been confirmed by theoretical calculations. The theoretical study in this work provides insights into the details of the reaction. An unprecedented self-catalysis mechanism of organic hydroperoxides, that is, the reactant t-BuOOH also has a catalytic effect, was uncovered at the molecular level. Moreover, as the solvent, water molecules also clearly have an efficient catalytic effect. Due to the catalysis of t-BuOOH and water, the metal-independent reaction of t-BuOOH and DCBQ can occur under moderate conditions. Our findings about the novel catalytic effect of organic hydroperoxides t-BuOOH could offer a unique perspective into the design of new catalysts and an understanding of the catalytic biological, environmental, and air pollution reactions. Furthermore, organic hydroperoxide t-BuOOH could serve as a proton shuttle, where the proton transfer process is accompanied by simultaneous charge transfer. Therefore, organic hydroperoxides may disrupt the vital proton transfer process in biological systems and may give rise to unexpected toxicity.

7.
Sci Total Environ ; 930: 172794, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38677421

ABSTRACT

The rapid urbanization witnessed in developing countries in Asia and Africa has led to a substantial increase in municipal solid waste (MSW) generation. However, the corresponding disposal strategies, along with constraints in land resources and finances, compounded by unorganized public behaviour, have resulted in ineffective policy implementation and monitoring. This lack of systematic and targeted orientation, combined with blind mapping, has led to inefficient development in many areas. This review examines the key challenges of MSW management in developing countries in Asia and Africa from 2013 to 2023, drawing insights from 170 academic papers. Rather than solely focusing on recycling, the study proposes waste sorting at the source, optimization of landfill practices, thermal treatment measures, and strategies to capitalize on the value of waste as more pertinent solutions aligned with local realities. Barriers to optimizing management systems arise from socio-economic factors, infrastructural limitations, and cultural considerations. The review emphasizes the importance of integrating the study area into the circular economy framework, with a focus on enhancing citizen participation in solid waste reduction and promoting recycling initiatives, along with seeking economic assistance from international organizations.

8.
J Phys Chem Lett ; 15(15): 4197-4205, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38598694

ABSTRACT

Multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are excellent candidates for high-performance organic light-emitting diodes (OLEDs) due to their narrowband emission properties. However, the inherent mechanism of regulating the rate of intersystem crossing (ISC) is ambiguous in certain MR-TADF skeletons. Herein, we propose a mechanism of accelerating ISC in B/S-based MR-TADF emitters by peripheral modifications of electron-donating groups (EDGs) without affecting the narrowband emission property. The long-range charge transfer (LRCT) stems from the introduced EDG leading to high-lying singlet and triplet excited states. The ISC process is accelerated by the enhanced spin-orbital coupling (SOC) between the singlet short-range charge transfer (SRCT) and triplet LRCT manifolds. Meanwhile, the narrowband emission derived from the MR-type SRCT state is well retained as expected in the peripherally modified MR-TADF emitters. This work reveals the regulation mechanism of photophysical properties by high-lying LRCT excited states and provides a significant theoretical basis for modulating the rate of ISC in the further design of MR-TADF materials.

9.
Front Oncol ; 14: 1329264, 2024.
Article in English | MEDLINE | ID: mdl-38496764

ABSTRACT

Low Grade Fibromyxoid Sarcoma (LGFMS), a rare entity characterized by bland histologic features, typically affects deep soft tissues of the trunk and lower extremities. Rare cases have been reported arising from the viscera and few demonstrating morphology of high-grade dedifferentiation. Here we report a 39-year-old Chinese woman presenting with primary lung LGFMS, which metastasized to the pancreas five years after diagnosis and then relapsed ten years later as a mediastinum mass. Microscopically, the lung and pancreatic lumps shared similar classical features of LGFMS, composed of bland spindle-shaped cells with low mitotic activity. However, the mediastinal mass had dedifferentiated morphology of dense sheets of round and epithelioid cells with high degree of nuclear pleomorphism and brisk mitosis. Molecular studies showed both classical and dedifferentiated areas had FUS::CREB3L2 rearrangement. However, the mediastinal dedifferentiated area presented with extra H193Y mutation of the TP53. Moreover, the mediastinal tumor displayed a strong and diffuse pattern of p53 expression immunohistochemically, but the primary lung and secondary pancreatic masses did not. Thus, we diagnosed the mediastinal mass as dedifferentiated LGFMS and proposed that TP53 mutation was probably the driver gene alteration in the process, which, to the best of our knowledge, has not been reported in the existing literature.

10.
Environ Sci Pollut Res Int ; 31(19): 27804-27816, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38517629

ABSTRACT

With the development of industry and economy, ammonia nitrogen pollutions in surface water are of great concern worldwide. This study investigated the historical contents of total ammonia nitrogen (TAN) and unionized ammonia molecules (NH3) in nine fresh lakes in China during 2014-2022. Three different classification methods (flood season, season, and geographical distribution) were used to analyze the concentration variation of TAN and NH3. The concentration of TAN first decreased and then increased in the flood season, showing a lower concentration in summer and a higher concentration in winter. The variation trend of NH3 was in an opposite way with TAN. Correlation analysis between ammonia and 10 water quality parameters and 4 pollution emission and treatment parameters showed that the correlation coefficient between TAN and total phosphorus (total nitrogen) was 0.44 (0.43), respectively. The correlation coefficients between average annual TAN concentration and total emissions (waste water treatment input) were 0.35 (0.53), respectively. Combined with ecotoxicity data from a series of aquatic species, the ecological risks of TAN and NH3 in lakes were evaluated using hazard quotient and joint probability curve methods. From 2014 to 2022, the probability of 5% species affected in the acute ecological risk of TAN and NH3 is lower than 0.01, but for the chronic ecological risk of TAN and NH3, the probabilities of 5% species affected are 0.003-0.030 and 0.04-0.14, respectively. The chronic ecological risks were higher than the acute ecological risks, and high risks in plateau lakes like Dianchi Lake should be paid more attention to.


Subject(s)
Ammonia , Environmental Monitoring , Lakes , Water Pollutants, Chemical , Lakes/chemistry , China , Ammonia/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Water Quality , Seasons
11.
J Invest Dermatol ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38447867

ABSTRACT

Rosacea is a chronic inflammatory skin disorder characterized by immune response-dependent erythema and pustules. S100A9, a proinflammatory alarmin, has been associated with various inflammation-related diseases. However, the specific role of S100A9 in rosacea remains unexplored. Therefore, our objective was to unravel the role of S100A9 in the pathogenesis of rosacea and its underlying molecular mechanisms. In this study, we show that expression levels of S100A9 were elevated in both the lesions and serum of patients with papulopustular rosacea as well as in lesions of the LL37-induced rosacea-like mouse model. Moreover, the upregulation of S100A9 was correlated with clinical severity and levels of inflammatory cytokines. In addition, we demonstrated that S100A9 promoted the production of proinflammatory factors in HaCaT cells by activating toll-like receptor 4/MyD88/NF-κB signaling pathways. Notably, inhibition of S100A9 suppressed the progression of rosacea-like dermatitis and inflammatory responses in the LL37-induced rosacea-like mouse model through toll-like receptor 4/MyD88/NF-κB signaling pathways. In conclusion, this study illustrated that S100A9 participates in the pathogenesis of rosacea by upregulating toll-like receptor 4/MyD88/NF-κB signaling pathways, thereby promoting rosacea-associated skin inflammation. These results not only expand our understanding of the potential role of S100A9 in the development of rosacea but also offer greater insight toward targeted therapies.

12.
Psychol Res Behav Manag ; 17: 627-640, 2024.
Article in English | MEDLINE | ID: mdl-38410377

ABSTRACT

Objective: To explore the influence of bully victims on the suicidal tendencies of college students, and the moderating role of teacher emotional support and family support in the relationship between bully victims and college students' suicidal tendencies, in order to provide a reference for the effective intervention of college students' suicide behavior. Methods: Based on a survey of 15,560 college students. Multiple stepwise regression and Interaction analysis explore the impact of the bully victimization on college students' suicidal tendencies and the moderating role of family support and teacher emotional support in the relationship between the bully victim and college students' suicidal tendencies. Results: This study found that the Suicidal Tendencies score of college students was 19.79 points, indicating that some college students have a risk of suicidal tendencies; secondly, verbal bullying (ß = 0.084, P <0.001), physical bullying (ß = 0.222, P <0.001) and social relationship bullying (ß = 0.122, P <0.001) have a positive and significant impact on the suicidal tendencies of college students; in addition, family support and teacher emotional support have a significant regulatory effect on the bully victim and college students Suicidal Tendencies and family support. The regulating effect was significantly higher than that of teacher emotional support. Conclusion: Chinese college students have the risk of suicidal tendencies; peer bullying victimization is an important reason for affecting college students' suicidal tendencies, teacher emotional support is a protective factor for bully victims to affect college students' suicidal tendencies, and family support has a significant moderating effect on the bully victim and college students' suicidal tendencies. Therefore, it is necessary to actively adopt home-school linkage and home-school communication to reduce campus violence and increase the psychological resilience of college students.

14.
Antioxidants (Basel) ; 13(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38397739

ABSTRACT

This study aims to investigate the impact of dietary supplementation with selenium yeast (SeY) and glycerol monolaurate (GML) on the transfer of antioxidative capacity between the mother and fetus during pregnancy and its underlying mechanisms. A total of 160 sows with similar body weight and parity of 3-6 parity sows were randomly and uniformly allocated to four groups (n = 40) as follows: CON group, SeY group, GML group, and SG (SeY + GML) group. Animal feeding started from the 85th day of gestation and continued to the day of delivery. The supplementation of SeY and GML resulted in increased placental weight and reduced lipopolysaccharide (LPS) levels in sow plasma, placental tissues, and piglet plasma. Furthermore, the redox balance and inflammatory markers exhibited significant improvements in the plasma of sows fed with either SeY or GML, as well as in their offspring. Moreover, the addition of SeY and GML activated the Nrf2 signaling pathway, while downregulating the expression of pro-inflammatory genes and proteins associated with inflammatory pathways (MAPK and NF-κB). Vascular angiogenesis and nutrient transportation (amino acids, fatty acids, and glucose) were upregulated, whereas apoptosis signaling pathways within the placenta were downregulated with the supplementation of SeY and GML. The integrity of the intestinal and placental barriers significantly improved, as indicated by the increased expression of ZO-1, occludin, and claudin-1, along with reduced levels of DLA and DAO with dietary treatment. Moreover, supplementation of SeY and GML increased the abundance of Christensenellaceae_R-7_group, Clostridium_sensus_stricto_1, and Bacteroidota, while decreasing levels of gut microbiota metabolites LPS and trimethylamine N-oxide. Correlation analysis demonstrated a significant negative relationship between plasma LPS levels and placental weight, oxidative stress, and inflammation. In summary, dietary supplementation of SeY and GML enhanced the transfer of antioxidative capacity between maternal-fetal during pregnancy via gut-placenta axis through modulating sow microbiota composition.

15.
Sci Data ; 11(1): 169, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316816

ABSTRACT

Compared to commercial chickens, local breeds exhibit better in meat quality and flavour, but the productivity (e.g., growth rate, body weight) of local chicken breeds is rather low. Genetic analysis based on whole-genome sequencing contributes to elucidating the genetic markers or putative candidate genes related to some economic traits, facilitating the improvement of production performance, the acceleration of breeding progress, and the conservation of genetic resources. Here, a total of 209 local chickens from 13 breeds were investigated, and the observation of approximately 91.4% high-quality sequences (Q30 > 90%) and a mapping rate over 99% for each individual indicated good results of this study, as confirmed by a genome coverage of 97.6%. Over 19 million single nucleotide polymorphisms (SNPs) and 1.98 million insertion-deletions (InDels) were identified using the reference genome (GRCg7b), further contributing to the public database. This dataset provides valuable resources for studying genetic diversity and adaptation and for the cultivation of new chicken breeds/lines.


Subject(s)
Chickens , Genome , Animals , Chickens/genetics , China , Genetic Markers , Genetic Variation , Phenotype , Polymorphism, Single Nucleotide , Whole Genome Sequencing
16.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256234

ABSTRACT

Circadian rhythm disorders pose major risks to human health and animal production activity, and the hypothalamus is the center of circadian rhythm regulation. However, the epigenetic regulation of circadian rhythm based on farm animal models has been poorly investigated. We collected chicken hypothalamus samples at seven time points in one light/dark cycle and performed long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA sequencing to detect biomarkers associated with circadian rhythm. We enhanced the comprehensive expression profiling of ncRNAs and mRNAs in the hypothalamus and found two gene sets (circadian rhythm and retinal metabolism) associated with the light/dark cycle. Noncoding RNA networks with circadian expression patterns were identified by differential expression and circadian analysis was provided that included 38 lncRNAs, 15 circRNAs, and 200 candidate genes. Three lncRNAs (ENSGALT00000098661, ENSGALT00000100816, and MSTRG.16980.1) and one circRNA (novel_circ_010168) in the ncRNA-mRNA regulatory network were identified as key molecules influencing circadian rhythm by regulating AOX1 in retinal metabolism. These ncRNAs were predicted to be related to pernicious anemia, gonadal, eye disease and other disorders in humans. Together, the findings of this study provide insights into the epigenetic mechanisms of circadian rhythm and reveal AOX1 as a promising target of circadian rhythm regulation.


Subject(s)
RNA, Long Noncoding , Animals , Humans , RNA, Long Noncoding/genetics , Epigenesis, Genetic , RNA, Circular/genetics , Circadian Rhythm/genetics , RNA, Messenger/genetics
17.
BMC Nurs ; 23(1): 32, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200515

ABSTRACT

BACKGROUND: With the continuing impact of the aging population, medical-elderly care integrated institutions, as a way to bear the pressure of medical and elderly care, effectively ensure the quality of life of the elderly in their later years. OBJECTIVES: To explore the preferences of medical-elderly care integrated institutions among Chinese middle-aged and older people and to provide a reference for establishing elderly-oriented development of medical-elderly care integrated institutions. METHODS: In this study, a discrete choice experiment (DCE) was used to investigate the preferences of people aged 45 years and older in medical-elderly care integrated institutions in China from October 20, 2022, to November 10, 2022. A mixed logit regression model was used to analyze the DCE data. Participants' willingness to pay for each attribute was also calculated. RESULTS: Data from 420 participants who provided valid responses were included in the analysis. In terms of the choice preference, moderate service quality (vs. poor service quality: ß = 1.707, p < 0.001, 95% CI 1.343 ~ 2.071) and high medical technology level (vs. low medical technology level: ß = 1.535, p < 0.001, 95% CI 1.240 ~ 1.830) were the most important attributes to middle-aged and older people, followed by monthly cost, environmental facilities, the convenience of transportation, and entertainment activities. Regarding the willingness to pay, participants were more willing to pay for service quality and medical technology level than for other attributes. They were willing to pay $3156 and $2838 more for "poor service quality" and "low medical technology level," respectively, to receive "moderate service quality " (p = 0.007, 95% CI 963 ~ 5349) and "high medical technology level" (p = 0.005, 95% CI 852 ~ 4824). CONCLUSIONS: The state should attach great importance to the development of medical-elderly care integrated services industry, actively optimize the model of the medical-elderly care integrated service, improve the facilities, and create a healthy environment. At the same time, give full play to the role of medical insurance, long-term care insurance, and commercial insurance, so as to improve the comprehensive quality of life of the elderly. PUBLIC CONTRIBUTION: The design of the experimental selection was guided by 10 experts in the field, 5 Chinese government officials, and interviews and focus group discussions, without whose participation this study would not have been possible.

18.
J Nanobiotechnology ; 22(1): 43, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287357

ABSTRACT

The central nervous system (CNS) maintains homeostasis with its surrounding environment by restricting the ingress of large hydrophilic molecules, immune cells, pathogens, and other external harmful substances to the brain. This function relies heavily on the blood-cerebrospinal fluid (B-CSF) and blood-brain barrier (BBB). Although considerable research has examined the structure and function of the BBB, the B-CSF barrier has received little attention. Therapies for disorders associated with the central nervous system have the potential to benefit from targeting the B-CSF barrier to enhance medication penetration into the brain. In this study, we synthesized a nanoprobe ANG-PEG-UCNP capable of crossing the B-CSF barrier with high targeting specificity using a hydrocephalus model for noninvasive magnetic resonance ventriculography to understand the mechanism by which the CSF barrier may be crossed and identify therapeutic targets of CNS diseases. This magnetic resonance nanoprobe ANG-PEG-UCNP holds promising potential as a safe and effective means for accurately defining the ventricular anatomy and correctly locating sites of CSF obstruction.


Subject(s)
Blood-Brain Barrier , Brain , Brain/diagnostic imaging , Central Nervous System , Biological Transport/physiology , Magnetic Resonance Imaging
19.
Cancer Biol Med ; 21(1)2024 01 03.
Article in English | MEDLINE | ID: mdl-38172538

ABSTRACT

The intricate interplay between the human immune system and cancer development underscores the central role of immunotherapy in cancer treatment. Within this landscape, the innate immune system, a critical sentinel protecting against tumor incursion, is a key player. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway has been found to be a linchpin of innate immunity: activation of this signaling pathway orchestrates the production of type I interferon (IFN-α/ß), thus fostering the maturation, differentiation, and mobilization of immune effectors in the tumor microenvironment. Furthermore, STING activation facilitates the release and presentation of tumor antigens, and therefore is an attractive target for cancer immunotherapy. Current strategies to activate the STING pathway, including use of pharmacological agonists, have made substantial advancements, particularly when combined with immune checkpoint inhibitors. These approaches have shown promise in preclinical and clinical settings, by enhancing patient survival rates. This review describes the evolving understanding of the cGAS-STING pathway's involvement in tumor biology and therapy. Moreover, this review explores classical and non-classical STING agonists, providing insights into their mechanisms of action and potential for optimizing immunotherapy strategies. Despite challenges and complexities, the cGAS-STING pathway, a promising avenue for enhancing cancer treatment efficacy, has the potential to revolutionize patient outcomes.


Subject(s)
Neoplasms , Signal Transduction , Humans , Nucleotidyltransferases/metabolism , Immunity, Innate , Neoplasms/metabolism , Immunotherapy , Tumor Microenvironment
20.
Adv Sci (Weinh) ; 11(12): e2301164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229144

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) is a conserved serine/threonine kinase that integrates various environmental signals to regulate cell growth and metabolism. mTORC1 activation requires tethering to lysosomes by the Ragulator-Rag complex. However, the dynamic regulation of the interaction between Ragulator and Rag guanosine triphosphatase (GTPase) remains unclear. In this study, that LAMTOR1, an essential component of Ragulator, is dynamically ubiquitinated depending on amino acid abundance is reported. It is found that the E3 ligase TRAF4 directly interacts with LAMTOR1 and catalyzes the K63-linked polyubiquitination of LAMTOR1 at K151. Ubiquitination of LAMTOR1 by TRAF4 promoted its binding to Rag GTPases and enhanced mTORC1 activation, K151R knock-in or TRAF4 knock-out blocks amino acid-induced mTORC1 activation and accelerates the development of inflammation-induced colon cancer. This study revealed that TRAF4-mediated LAMTOR1 ubiquitination is a regulatory mechanism for mTORC1 activation and provides a therapeutic target for diseases involving mTORC1 dysregulation.


Subject(s)
Colorectal Neoplasms , Monomeric GTP-Binding Proteins , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , TNF Receptor-Associated Factor 4/metabolism , Ubiquitination , Amino Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...