Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10919-10929, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35536807

ABSTRACT

Finding dynamic Moore-Penrose inverses (DMPIs) in real-time is a challenging problem due to the time-varying nature of the inverse. Traditional numerical methods for static Moore-Penrose inverse are not efficient for calculating DMPIs and are restricted by serial processing. The current state-of-the-art method for finding DMPIs is called the zeroing neural network (ZNN) method, which requires that the time derivative of the associated matrix is available all the time during the solution process. However, in practice, the time derivative of the associated dynamic matrix may not be available in a real-time manner or be subject to noises caused by differentiators. In this article, we propose a novel gradient-based neural network (GNN) method for computing DMPIs, which does not need the time derivative of the associated dynamic matrix. In particular, the neural state matrix of the proposed GNN converges to the theoretical DMPI in finite time. The finite-time convergence is kept by simply setting a large parameter when there are additive noises in the implementation of the GNN model. Simulation results demonstrate the efficacy and superiority of the proposed GNN method.

2.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4332-4345, 2022 09.
Article in English | MEDLINE | ID: mdl-33600326

ABSTRACT

Long short-term memory (LSTM) neural networks and attention mechanism have been widely used in sentiment representation learning and detection of texts. However, most of the existing deep learning models for text sentiment analysis ignore emotion's modulation effect on sentiment feature extraction, and the attention mechanisms of these deep neural network architectures are based on word- or sentence-level abstractions. Ignoring higher level abstractions may pose a negative effect on learning text sentiment features and further degrade sentiment classification performance. To address this issue, in this article, a novel model named AEC-LSTM is proposed for text sentiment detection, which aims to improve the LSTM network by integrating emotional intelligence (EI) and attention mechanism. Specifically, an emotion-enhanced LSTM, named ELSTM, is first devised by utilizing EI to improve the feature learning ability of LSTM networks, which accomplishes its emotion modulation of learning system via the proposed emotion modulator and emotion estimator. In order to better capture various structure patterns in text sequence, ELSTM is further integrated with other operations, including convolution, pooling, and concatenation. Then, topic-level attention mechanism is proposed to adaptively adjust the weight of text hidden representation. With the introduction of EI and attention mechanism, sentiment representation and classification can be more effectively achieved by utilizing sentiment semantic information hidden in text topic and context. Experiments on real-world data sets show that our approach can improve sentiment classification performance effectively and outperform state-of-the-art deep learning-based methods significantly.


Subject(s)
Neural Networks, Computer , Sentiment Analysis , Emotions , Memory, Long-Term , Semantics
3.
IEEE Trans Cybern ; 48(1): 199-214, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28103198

ABSTRACT

To automatically determine the number of clusters and generate more quality clusters while clustering data samples, we propose a harmonious genetic clustering algorithm, named HGCA, which is based on harmonious mating in eugenic theory. Different from extant genetic clustering methods that only use fitness, HGCA aims to select the most suitable mate for each chromosome and takes into account chromosomes gender, age, and fitness when computing mating attractiveness. To avoid illegal mating, we design three mating prohibition schemes, i.e., no mating prohibition, mating prohibition based on lineal relativeness, and mating prohibition based on collateral relativeness, and three mating strategies, i.e., greedy eugenics-based mating strategy, eugenics-based mating strategy based on weighted bipartite matching, and eugenics-based mating strategy based on unweighted bipartite matching, for harmonious mating. In particular, a novel single-point crossover operator called variable-length-and-gender-balance crossover is devised to probabilistically guarantee the balance between population gender ratio and dynamics of chromosome lengths. We evaluate the proposed approach on real-life and artificial datasets, and the results show that our algorithm outperforms existing genetic clustering methods in terms of robustness, efficiency, and effectiveness.


Subject(s)
Cluster Analysis , Computational Biology/methods , Models, Genetic , Algorithms , Animals , Chromosomes/genetics , Databases, Genetic , Female , Male , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...