Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Theriogenology ; 209: 243-250, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37480702

ABSTRACT

The survival, motility and capacitation of sperm in the female reproductive tract are important prerequisites for fertilization. The uterus is the main location for sperm capacitation. One of the most important physiological functions of the endometrial epithelium is to create a suitable uterine environment under the regulation of ovarian hormones, to ensure sperm capacitation. The composition of uterine fluid directly affects sperm capacitation. Fructose is an important component of semen that supports sperm viability and motility. Aldose reductase, a rate-limiting enzyme in the polyol pathway, metabolizes sorbitol and fructose, thereby supplying cells with necessary energy for functional activities. Existing studies have reported the presence aldose reductase in the endometrium, leading us to hypothesize that its expression in endometrial epithelium might promote sperm capacitation by maintaining the uterine environment. Yet, the mechanism of regulation has not been clarified. In this study, we investigated the expression of aldose reductase in mouse endometrial epithelium and its potential role in sperm capacitation. We initially investigated the periodic characteristics of glucose, fructose and sorbitol in uterine fluid. We then studied the temporal and spatial characteristics of aldose reductase in the endometrial epithelium. Next, we examined the effect of aldose reductase on glucose, fructose and sorbitol in uterine fluid. Finally, we explored the effect of aldose reductase on sperm capacitation and fertilization. The results showed that glucose and fructose content in uterine fluid and the expression of aldose reductase fluctuated periodically during physiological periods. Inhibition of aldose reductase in the endometrial epithelium interfered with sperm capacitation and fertilization by reducing the fructose levels in the uterine fluid. To conclude, the aldose reductase-mediated polyol pathway in endometrial epithelial cells is essential to maintain an appropriate fructose environment in the uterine fluid for sperm capacitation and fertilization.


Subject(s)
Uterine Diseases , Female , Male , Animals , Mice , Aldehyde Reductase/genetics , Sperm Capacitation , Semen , Epithelial Cells , Uterine Diseases/veterinary , Fructose/pharmacology , Glucose/pharmacology
2.
Reproduction ; 165(4): 457-474, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36745023

ABSTRACT

In brief: Impaired spermatogenesis resulting from disturbed cholesterol metabolism due to intake of high-fat diet (HFD) has been widely recognized, however, the role of preprotein invertase subtilin 9 (PCSK9), which is a negative regulator of cholesterol metabolism, has never been reported. This study aims to reveal the role of PCSK9 on spermatogenesis induced by HFD in mice. Abstract: Long-term consumption of a high-fat diet (HFD) is an important factor that leads to impaired spermatogenesis exhibiting poor sperm quantity and quality. However, the mechanism of this is yet to be elucidated. Disrupted cholesterol homeostasis is one of many crucial pathological factors which could contribute to impaired spermatogenesis. As a negative regulator of cholesterol metabolism, preprotein invertase subtilin 9 (PCSK9) mediates low density lipoprotein receptor (LDLR) degradation to the lysosome, thereby reducing the expression of LDLR on the cell membrane and increasing serum low-density lipoprotein cholesterol level, resulting in lipid metabolism disorders. Here, we aim to study whether PCSK9 is a pathological factor for impaired spermatogenesis induced by HFD and the underlying mechanism. To meet the purpose of our study, we utilized wild-type C57BL/6 male mice and PCSK9 knockout mice with same background as experimental subjects and alirocumab, a PCSK9 inhibitor, was used for treatment. Results indicated that HFD induced higher PCSK9 expression in serum, liver, and testes, and serum PCSK9 is negatively correlated with spermatogenesis, while both PCSK9 inhibitor treatment and PCSK9 knockout methodologies ameliorated impaired lipid metabolism and spermatogenesis in mice fed a HFD. This could be due to the overexpression of PCSK9 induced by HFD leading to dyslipidemia, resulting in testicular lipotoxicity, thus activating the Bcl-2-Bax-Caspase3 apoptosis signaling pathway in testes, particularly in Leydig cells. Our study demonstrates that PCSK9 is an important pathological factor in the dysfunction of spermatogenesis in mice induced by HFD. This finding could provide innovative ideas for the diagnosis and treatment of male infertility.


Subject(s)
Diet, High-Fat , Proprotein Convertase 9 , Animals , Male , Mice , beta-Fructofuranosidase , Cholesterol , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9/genetics , Semen
3.
Life Sci ; 313: 121224, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435224

ABSTRACT

AIMS: Polycystic ovary syndrome (PCOS) is a common endocrine disorder in the women of childbearing age. It is characterized by hyperandrogenism and abnormal follicular growth and ovulation. The polyol pathway is a glucose metabolism bypass pathway initiated by aldose reductase (ADR). Androgen induces the expression of ADR in the male reproductive tract, which has a general physiological significance for male reproductive function. Here we investigate whether hyperandrogenemia in PCOS leads to increased flux of the polyol pathway in ovarian tissue, which in turn affects follicular maturation and ovulation through oxidative stress. MAIN METHODS: We used clinical epidemiological methods to collect serum and granulosa cells from clinical subjects for a clinical case-control study. At the same time, cell biology and molecular biology techniques were used to conduct animal and cell experiments to further explore the mechanism of hyperandrogen-induced ovarian polyol pathway hyperactivity and damage to ovarian function. KEY FINDINGS: Here, we find that hyperandrogenism of PCOS can induce the expression of ovarian aldose reductase, which leads to the increase of the polyol pathway flux, and affects ovarian function through excessive oxidative stress. SIGNIFICANCE: Our research has enriched the pathological mechanism of PCOS and may provide a new clue for the clinical treatment of PCOS.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Humans , Animals , Female , Male , Polycystic Ovary Syndrome/metabolism , Hyperandrogenism/metabolism , Aldehyde Reductase/metabolism , Case-Control Studies , Oxidative Stress
4.
PLoS One ; 17(12): e0278907, 2022.
Article in English | MEDLINE | ID: mdl-36520790

ABSTRACT

OBJECTIVE: This study offers meta-analytic data on the potential association between epilepsy and depression especially for the prevalence of depression in epilepsy or vice versa. METHODS: The relevant studies were searched and identified from nine electronic databases. Studies that mentioned the prevalence and/or incidence of epilepsy and depression were included. Hand searches were also included. The search language was English and the search time was through May 2022. Where feasible, random-effects models were used to generate pooled estimates. RESULTS: After screening electronic databases and other resources, 48 studies from 6,234 citations were included in this meta-analysis. The period prevalence of epilepsy ranged from 1% to 6% in patients with depression. In population-based settings, the pooled period prevalence of depression in patients with epilepsy was 27% (95% CI, 23-31) and 34% in clinical settings (95% CI, 30-39). Twenty studies reported that seizure frequency, low income, unemployment of the patients, perception of stigma, anxiety, being female, unmarried status, disease course, worse quality of life, higher disability scores, and focal-impaired awareness seizures were risk factors for depression. CONCLUSION: Our study found that epilepsy was associated with an increased risk of depression. Depression was associated with the severity of epilepsy.


Subject(s)
Epilepsies, Partial , Epilepsy , Humans , Female , Male , Depression/complications , Depression/epidemiology , Quality of Life , Epilepsy/complications , Epilepsy/epidemiology , Seizures/complications
5.
Reproduction ; 162(6): 397-410, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34554110

ABSTRACT

The incidence of polycystic ovary syndrome (PCOS) due to high-fat diet (HFD) consumption has been increasing significantly. However, the mechanism by which a HFD contributes to the pathogenesis of PCOS has not been elucidated. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein that regulates cholesterol metabolism. Our previous study revealed abnormally high PCSK9 levels in serum from patients with PCOS and in serum and hepatic and ovarian tissues from PCOS model mice, suggesting that PCSK9 is involved in the pathogenesis of PCOS. However, the factor that induces high PCSK9 expression in PCOS remains unclear. In this study, Pcsk9 knockout mice were used to further explore the role of PCSK9 in PCOS. We also studied the effects of a HFD on the expression of PCSK9 and sterol regulatory element-binding protein 2 (SREBP2), a regulator of cholesterol homeostasis and a key transcription factor that regulates the expression of PCSK9, and the roles of these proteins in PCOS pathology. Our results indicated HFD may play an important role by inducing abnormally high PCSK9 expression via SREBP2 upregulation. We further investigated the effects of an effective SREBP inhibitor, fatostain, and found that it could reduce HFD-induced PCSK9 expression, ameliorate hyperlipidemia and improve follicular development in PCOS model mice. Our study thus further elucidates the important role of an HFD in the pathogenesis of PCOS and provides a new clue in the prevention and treatment of this disorder.


Subject(s)
Polycystic Ovary Syndrome , Proprotein Convertase 9 , Animals , Diet, High-Fat/adverse effects , Female , Humans , Mice , Mice, Knockout , Polycystic Ovary Syndrome/etiology , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Up-Regulation
6.
Reprod Sci ; 28(11): 3094-3108, 2021 11.
Article in English | MEDLINE | ID: mdl-34460091

ABSTRACT

Many functional activities of endometrium epithelium are energy consuming which are very important for maintaining intrauterine environment needed by early embryonic development and establishment of implantation window. Glucose is a main energy supplier and one of the main components of intrauterine fluid. Obviously, glucose transports in endometrium epithelium involve in for these activities but their functions have not been elucidated. In this research, we observed a spatiotemporal pattern of sodium glucose transporter 1 (SGLT1) expression in the mouse endometrium. We also determined that progesterone can promote the expression of SGLT1 in the mouse endometrial epithelium in response to the action of oestrogen. Treatment with the SGLT1 inhibitor phlorizin or small interfering RNA specific for SGLT1 (SGLT1-siRNA) altered glucose uptake in primary cultured endometrial epithelial cells, which exhibited reduced ATP levels and AMPK activation. The injection of phlorizin or SGLT1-siRNA into one uterine horn of each mouse on day 2 of pregnancy led to an increased glucose concentration in the uterine fluid and decreased number of harvested normal blastocysts and decreased expression of integrin αVß3 in endometrial epithelium and increased expression of mucin 1 and lactoferrin in endometrial epithelium and the uterine homogenates exhibited activated AMPK, a decreased ATP level on day 4, and a decreased number of implantation sites on day 5. In embryo transfer experiments, pre-treatment of the uterine horn with phlorizin or SGLT1-siRNA during the implantation window led to a decreased embryo implantation rate on day 5 of pregnancy, even when embryos from normal donor mice were used. In conclusion, SGLT1, which participates in glucose transport in the mouse endometrial epithelium, inhibition and/or reduced expression of SGLT1 affects early embryo development by altering the glucose concentration in the uterine fluid. Inhibition and/or reduced expression of SGLT1 also affects embryo implantation by influencing energy metabolism in epithelial cells, which consequently influences implantation-related functional activities.


Subject(s)
Embryo Implantation/physiology , Embryonic Development/physiology , Endometrium/metabolism , Epithelium/metabolism , Gene Expression Regulation, Developmental/physiology , Sodium-Glucose Transporter 1/biosynthesis , Animals , Embryo Transfer/methods , Female , Glucose/metabolism , Mice , Pregnancy , Sodium-Glucose Transporter 1/genetics
7.
Front Physiol ; 12: 674924, 2021.
Article in English | MEDLINE | ID: mdl-34248664

ABSTRACT

GLUT4 is involved in rapid glucose uptake among various kinds of cells to contribute to glucose homeostasis. Prior data have reported that aberrant glucose metabolism by GLUT4 dysfunction in the uterus could be responsible for infertility and increased miscarriage. However, the expression and precise functions of GLUT4 in the endometrium under physiological conditions remain unknown or controversial. In this study, we observed that GLUT4 exhibits a spatiotemporal expression in mouse uterus on pregnant days 1-4; its expression especially increased on pregnant day 4 during the window of implantation. We also determined that estrogen, in conjunction with progesterone, promotes the expression of GLUT4 in the endometrial epithelium in vivo or in vitro. GLUT4 is an important transporter that mediates glucose transport in endometrial epithelial cells (EECs) in vitro or in vivo. In vitro, glucose uptake decreased in mouse EECs when the cells were treated with GLUT4 small interfering RNA (siRNA). In vivo, the injection of GLUT4-siRNA into one side of the mouse uterine horns resulted in an increased glucose concentration in the uterine fluid on pregnant day 4, although it was still lower than in blood, and impaired endometrial receptivity by inhibiting pinopode formation and the expressions of leukemia inhibitory factor (LIF) and integrin ανß3, finally affecting embryonic development and implantation. Overall, the obtained results indicate that GLUT4 in the endometrial epithelium affects embryo development by altering glucose concentration in the uterine fluid. It can also affect implantation by impairing endometrial receptivity due to dysfunction of GLUT4.

8.
Reprod Sci ; 28(3): 703-714, 2021 03.
Article in English | MEDLINE | ID: mdl-33151524

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a disease characterized by hyperglycemia resulting from insulin resistance. In recent years, the incidence of T2DM has been increasing. Women with T2DM often suffer from infertility and early miscarriage; however, the underlying mechanisms remain unclear. Insulin is the most important regulatory hormone of glycogen metabolism. In addition, 5' adenosine monophosphate-activated protein kinase (AMPK) is an important regulator of glycogen metabolism. Patients with T2DM have inhibited AMPK expression in the liver, which leads to impaired glucose metabolism. However, the role of AMPK in endometrial glycogen metabolism has not been reported. In this study, a mouse model of T2DM was established to investigate whether altered endometrial glucose metabolism affects early embryo implantation. Metformin and insulin were used for therapy; the resulting changes to glycogen metabolism and embryo implantation were examined. The results indicate that the concentrations of glycogen decreased significantly in T2DM mice, resulting in insufficient energy supplies for proper endometrial function, and thereby impeding embryonic implantation. Interestingly, endometrial AMPK was not found to be overactivated. Insulin treatment was found to partially resolve the embryo implantation defects in T2DM mice. Metformin improved blood glucose but did not have a significant effect on local endometrial glucose metabolism. This study explored the changes in endometrial glucose metabolism in T2DM mouse, and the effects of these changes on embryo implantation. We found that insulin, but not metformin, significantly resolved embryo implantation problems. These findings will help to increase our understanding of the pathomechanisms of infertility and early miscarriage in women with T2DM.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Embryo Implantation , Endometrium/metabolism , Infertility, Female/etiology , AMP-Activated Protein Kinases/metabolism , Animals , Biomarkers/blood , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Embryo Implantation/drug effects , Endometrium/drug effects , Endometrium/physiopathology , Female , Glycogen/metabolism , Homeostasis , Hypoglycemic Agents/pharmacology , Infertility, Female/metabolism , Infertility, Female/physiopathology , Infertility, Female/prevention & control , Insulin/pharmacology , Metformin/pharmacology , Mice, Inbred ICR , Pregnancy
9.
Reprod Sci ; 27(9): 1752-1757, 2020 09.
Article in English | MEDLINE | ID: mdl-32086756

ABSTRACT

The incidence of diabetes in women of childbearing age has been increasing recently and implantation failure and early abortion are important reasons for infertility in diabetic women. Glycogen synthesis and decomposition are the cores of glucose homeostasis in endometrium and AMPK is activated when cellular energy consumption increases. Embryo implantation is a complex process required huge energy. Yet the changes of glucose metabolism in endometrium and its impact on embryo implantation in diabetic women are still unclear. In this research, we established diabetic pregnancy mice model by intraperitoneal injecting streptozotocin on pregnant day 1. We first tested the changes of endometrial glucose homeostasis and embryo implantation. Next, we demonstrated abnormal activation of AMPK in the endometrium of diabetic mice and its affecting endometrial glucose homeostasis. Finally, we compared the endometrial glucose homeostasis and embryo implantation outcome in diabetic pregnant mice treated with insulin or insulin combined with metformin. The results indicated that there was disturbed glucose homeostasis associated with excessive activation of AMPK in endometrium of diabetic pregnant mice. AMPK inhibitor improved the over-activation of AMPK pathway in the endometrium, meanwhile, partially corrected the abnormal glycogen metabolism and improved the implantation. Insulin improved the disorder of endometrial glucose homeostasis and implantation of diabetic mice. Our research explores the causes of high abortion and infertility rate in diabetic women which is to provide a therapeutic reference for patients with diabetes complicated with infertility and early abortion.


Subject(s)
Adenylate Kinase/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes, Gestational/metabolism , Embryo Implantation/physiology , Endometrium/metabolism , Glucose/metabolism , Homeostasis/physiology , Animals , Blood Glucose/metabolism , Embryo Implantation/drug effects , Female , Glycogen/metabolism , Hypoglycemic Agents/administration & dosage , Infertility, Female/metabolism , Insulin/administration & dosage , Metformin/administration & dosage , Pregnancy
10.
Am J Physiol Endocrinol Metab ; 316(4): E557-E567, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30668148

ABSTRACT

To investigate the role of progesterone-induced micro-RNA (miR)-152 in early embryonic development and implantation by regulating GLUT3 in endometrial epithelium, qRT-PCR was used to detect the expression of miR-152, GLUT1, and GLUT3 in the endometrial epithelial cells of female mice. GLUT1 and GLUT3 proteins were detected by immunohistochemical staining in the mouse endometrial epithelium. Bioinformatics prediction associated with a luciferase assay was performed to determine whether GLUT1 and GLUT3 are target genes of miR-152. Specific miR-152 mimics or inhibitors were transfected into the endometrial epithelial cells to, respectively, overexpress or downregulate miR-152. Next, the glucose concentration of uterine fluid was measured by conducting high-performance liquid chromatography in vivo, and the glucose uptake of the endometrial epithelial cells was observed using a fluorometric assay in vitro. Early embryonic development and implantation were also observed after the miR-152 mimics or inhibitors had been transfected. Embryo transfer was observed after the miR-152 mimic transfection. miR-152 was found to directly target and thereby downregulate GLUT3 expression. The expressions of both miR-152 and GLUT3 in the mouse endometrial epithelium had spatiotemporal characteristics on days 1-4 of pregnancy. miR-152 affected the glucose concentration of uterine fluid and the glucose uptake of endometrial epithelial cells. The transfection of specific miR-152 mimics led to impaired embryonic development and implantation. To conclude, in endometrial epithelial cells, progesterone-induced miR-152 downregulates GLUT3 at the posttranscriptional level to maintain a proper glucose concentration in the uterine fluid, which is necessary for early embryonic development and implantation.


Subject(s)
Embryo Implantation , Endometrium/metabolism , Extracellular Fluid/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 3/genetics , Glucose/metabolism , MicroRNAs/metabolism , Progesterone/metabolism , Animals , Down-Regulation , Embryonic Development , Epithelial Cells/metabolism , Female , Gene Expression Regulation , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/metabolism , Mice , Uterus
11.
Reprod Sci ; 26(2): 233-243, 2019 02.
Article in English | MEDLINE | ID: mdl-29661100

ABSTRACT

Our previous study showed that progesterone (P4) can specifically regulate the expression of some microRNAs (miRNAs) in endometrial epithelium. In the present study, we verified the P4-dependent expression of miR-145/miR-143 in endometrial epithelial cells, explored the regulative mechanism of the P4 receptor (PR), and investigated their effects on the proliferation of endometrial epithelial cells. Our results showed that P4 can induce the expression of miR-145/143 in endometrial epithelial cells by acting on the PR A subtype. P4-induced miR-145/143 can inhibit the expression of cyclin D2 by binding to cyclin D2 mRNA 3'UTR. It can also inhibit cell proliferation in mouse endometrial epithelium by arresting the cell cycle during the G1-S checkpoint. Furthermore, miR-145 and miR-143 can inhibit the proliferation of human endometrial cancer cells. In conclusion, P4-induced miR-145/miR-143 is an important regulator in the proliferation of endometrial epithelial cells, and it can also inhibit the proliferation of human endometrial cancer cells. Our study indicates miRNAs are important mechanism of P4 in inhibiting the proliferation of endometrial epithelial cells. And these miRNAs are potential candidates for the diagnosis of endometrial cancer and therapeutic targets.


Subject(s)
Cell Proliferation/drug effects , Endometrium/drug effects , Epithelial Cells/drug effects , MicroRNAs/metabolism , Progesterone/pharmacology , Animals , Cell Cycle , Cell Line, Tumor , Endometrium/cytology , Endometrium/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Estradiol/pharmacology , Female , Gene Expression Regulation/drug effects , Mice , MicroRNAs/genetics , Mifepristone/pharmacology
12.
Reprod Sci ; 24(12): 1639-1646, 2017 12.
Article in English | MEDLINE | ID: mdl-28299994

ABSTRACT

It is necessary for estrogen to activate mouse blastocysts, so that they can attach to endometrial epithelium in implantation and in our previous research, we have proved estrogen can induce a fast increase in intracellular calcium of mouse blastocysts through acting on G protein-coupled receptor 30 (GPR30), which further promotes their implantation. Moreover, there has been evidence that cytoskeletal proteins are involved in integrin-mediated adhesion of many kinds of cells, which also plays an important role in implantation. To prove estrogen induces rapidly the changes of cytoskeletal proteins in mouse blastocysts and its roles in implantation, we first used immunofluorescence staining and laser confocal microscopy to investigate the fast effect of estrogen on the expression and localization of cytoskeletal proteins in mouse blastocysts. Second, we used electroporation associated with RNA interference to knock down one of the important cytoskeletal proteins, talin, in the mouse blastocyst cells to investigate the fast effect of estrogen on the localization of integrins and the binding activity of integrins with their ligand fibronectin (FN). At last, mouse blastocysts with different treatments were cultured with FN or uterine epithelial cell line Ishikawa in vitro, respectively, and transferred into the bilateral uterine horns of recipient mice, to study the role of the fast effect of estrogen on cytoskeletal proteins in blastocysts adhesion and implantation. Our results indicated that estradiol (E2), E2 conjugated with bovine serum album (E2-BSA) and G-1 (a GPR30-specific agonist) could induce cytoskeletal protein talin, vinculin, and actin to cluster in the mouse blastocysts, while G15 (a GPR30-specific antagonist) and BAPTA (a calcium chelator) may block this effect induced by E2-BSA. Furthermore, E2-BSA could induce the clustering and relocalization of integrin ß1 and ß3 and increase the FN-binding activity of integrins in blastocyst cells, while E2-BSA could not induce these effects in the blastocysts pretreated with talin-small interfering RNA (siRNA). Meanwhile, the adhesion rate and implantation rate of blastocysts pretreated with talin-siRNA were significantly lower than those pretreated with control-siRNA. We provided the first evidence that the fast effect of estrogen might cause the clustering of the cytoskeletal proteins in mouse blastocyst cells and further induce the changes of localization and functional activity of integrins in the blastocyst cells, which play important roles in blastocyst implantation.


Subject(s)
Blastocyst/metabolism , Cytoskeletal Proteins/metabolism , Embryo Implantation , Estradiol/metabolism , Actins/metabolism , Animals , Cell Adhesion , Estradiol/administration & dosage , Estrogens/administration & dosage , Female , Mice , Mice, Transgenic , Talin/genetics , Talin/metabolism , Vinculin/metabolism
13.
Reprod Sci ; 24(10): 1444-1453, 2017 10.
Article in English | MEDLINE | ID: mdl-28122483

ABSTRACT

Progesterone (P4) is an important ovarian hormone that inhibits estrogen-dependent proliferation of endometrial epithelial cells (EECs). miR-152 has been reported to be a cell cycle regulator. In this study, we first demonstrated that P4 induced the expression of miR-152 in ovariectomized mice and Ishikawa cell. miR-152 was detected in the human endometrial cell lines that were stably transfected with P4 receptor. Results showed that P4 induced its expression through its receptor B subtype. Then, using the specific miRNA mimic and inhibitor, we proved that miR-152 impeded G1/S transition in the cell cycle of EECs and inhibited cellular proliferation via downregulating WNT-1 in mice and human endometrial cancer cell lines (Ishikawa, HEC-1-b, and KLE). miR-152 induced by P4 is an important inhibitor for the proliferation of EECs. miR-152 may be an important tumor suppressor microRNA in endometrial cancer.


Subject(s)
Cell Proliferation/drug effects , Down-Regulation/drug effects , Endometrium/drug effects , Epithelial Cells/drug effects , MicroRNAs/metabolism , Progesterone/pharmacology , Wnt1 Protein/metabolism , Animals , Cell Count , Cell Line, Tumor , Endometrium/metabolism , Epithelial Cells/metabolism , Estradiol/pharmacology , Female , Humans , Mice , MicroRNAs/genetics , Signal Transduction/drug effects , Wnt1 Protein/genetics
14.
Sheng Li Xue Bao ; 68(6): 716-724, 2016 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-28004065

ABSTRACT

The aim of the present study was to investigate the effects of progesterone (P4)-induced microRNA-1a (miR-1a) on the proliferation of endometrial epithelial cells (EECs) and the underlying mechanism. In vivo, following subcutaneous injection of estradiol (E2) alone (E2 group) or combined injections of E2 and P4 (E2P4 group) in ovariectomized mice, quantitative real-time PCR (qPCR) was used to check the expression of miR-1a-3p in the directly isolated mouse EECs. The agomir or antagomir specific for miR-1a-3p was injected into one side of the uterine horns of ovariectomized mice pretreated with E2 alone or in combination with P4, and the non-specific control agomir or antagomir was injected into their contralateral horns. Flow cytometry was used to analyze the cell cycle of EECs. Immunohistochemistry (IHC) was used to examine the location and expression of cyclin D2, cyclin E1, and cyclin E2 in the uterine tissue sections. In vitro, primary cultured mouse EECs were pretreated with E2 alone (E2 group) or in combination with P4 (E2P4 group). qPCR was used to detect the expression of miR-1a-3p. Exogenous mimic of miR-1a-3p was transfected into E2-pretreated EECs, and EdU incorporation analysis was used to test the proliferation activity of the EECs. The result of in vivo experiment showed that the expression of miR-1a-3p in E2P4 group was significantly higher than that in E2 group (P < 0.05). The miR-1a-3p agomir arrested cell cycle at G1 to S transition in the mice injected subcutaneously with E2 alone (P < 0.05). Conversely, silencing of miR-1a-3p with transfection of miR-1a-3p antagomir promoted the entry of cells into S phase in the mice injected subcutaneously with both E2 and P4 (P < 0.05). The expressions of cyclin E1 and cyclin E2, except for cyclin D2, in uterine sections were also dramatically reduced by miR-1a-3p overexpression in the uterine epithelium (P < 0.05). In vitro, miR-1a-3p was not expressed in the cells of both E2 and E2P4 groups. The mimic of miR-1a-3p decreased EECs proliferation activity (P < 0.05). These results indicate that P4-induced miR-1a can inhibit the expression of cyclin E1 and cyclin E2, consequently suppressing the proliferation of mouse EECs by arresting cells at G1/S phase.


Subject(s)
Cell Proliferation , Epithelial Cells , Uterus , Animals , Cell Cycle , Cell Division , Cells, Cultured , Estradiol , Female , Mice , MicroRNAs , Progesterone , Real-Time Polymerase Chain Reaction , Transfection
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 46(2): 205-8, 2015 Mar.
Article in Chinese | MEDLINE | ID: mdl-25924430

ABSTRACT

OBJECTIVE: To study the roles of the increased intracellular calcium induced rapidly by estrogen in the implantation of mouse blastocysts. METHODS: The mouse blastocysts were collected from the female mice on the pregnant day 4, divided into 3 groups: control, E2-BSA and BAPTA +E2-BSA. Immunofluorescence staining, confocal microscopy, embryo and endometrial epithenial cells co-culture and embryo transfer were used to investigate the effect of increased intracellular calcium induced by E2-BSA on the expression and localization of integrins in blastocysts and their adhesion to endometrial epithenial calls (EECs) and implantation into the endometrium. RESULTS: The increase of intracellular calcium induced rapidly by estrogen could cause the cluster and relocation of integrin av and beta3, and BAPTA might block this effect, the adhesion rate of blastocysts in contol group was 35.5%, BAPTA +E2-BSA group was 26.7% and significantly lower than 65.6% of E2-BSA group (P<0.05), and the implantation rate in BAPTA+E2-BSA group was 11.8%, which was significantly lower than 52.9% of E2-BSA group (P<0.05). CONCLUSION: The rapid increase of intracellular calcium induced by estrogen may cause the relocalization of integrin in blastocysts and their adhesion to ECCs, which is important in the process of implantation.


Subject(s)
Blastocyst/physiology , Calcium/metabolism , Embryo Implantation , Estrogens/physiology , Animals , Coculture Techniques , Cytoplasm , Embryo Transfer , Endometrium , Estradiol , Female , Mice , Pregnancy , Serum Albumin, Bovine
16.
Reprod Fertil Dev ; 2015 May 08.
Article in English | MEDLINE | ID: mdl-25950704

ABSTRACT

Integrins are the dominant and final adhesion molecules in the attachment process between the blastocysts and endometrium. It is necessary for oestrogen to rapidly activate mouse blastocysts so that they attach to the endometrial epithelium. Our previous study suggested that oestrogen can rapidly induce an increase in intracellular calcium in mouse blastocysts via G-protein-coupled receptor 30 (GPR30). Thus, we deduced that integrins may be involved in GPR30 mediation of the fast effect of oestrogen on mouse blastocysts in implantation. To prove our hypothesis, we used immunofluorescence staining and in vitro coculture of mouse blastocysts and endometrial epithelial cell line (EECs), Ishikawa cells, in the present study. We found that αv and ß1 integrin clustered in mouse blastocysts, and that ß3 integrin was relocalised to the apical membrane of blastocyst cells when embryos were treated with 1 µM 17ß-estradiol (E2), 1 µM E2 conjugated to bovine serum albumin (E2-BSA) and 1 µM G-1, a specific GPR30 agonist, for 30 min respectively, whereas pretreatment with 1 µM G15, a specific GPR30 antagonist, and 5 µM 1,2-Bis(2-aminophenoxy)ethane-N,N,N'',N''-tetraacetic acid tetrakis (acetoxymethyl ester)(BAPTA/AM), a cellular Ca2+ chelator, blocked the localisation of integrins induced by oestrogen via GPR30 in mouse blastocyst cells. E2, E2-BSA and G-1 increased the fibronectin (FN)-binding activity of integrins in blastocysts, whereas G15 and BAPTA/AM blocked the activation of integrins induced by oestrogen via GPR30 in mouse blastocysts. Inhibition of integrins by Arg-Gly-Asp peptide in blastocysts resulted in their failure to adhere to EECs in vitro, even if oestrogen or G-1 was provided. Together, the results indicate the fast effect of oestrogen via the GPR30 membrane receptor further induces relocalisation and activation of integrins in mouse blastocysts, which play important roles in the adhesion of blastocysts to EECs.

17.
Reprod Sci ; 22(10): 1312-20, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25820689

ABSTRACT

Our previous work demonstrated that estrogen could rapidly increase intracellular Ca(2+) in dormant mouse blastocysts. The purpose of the present study is to investigate the physiological relevance of G protein-coupled receptor 30 (GPR30) in the fast effect of estrogen on mouse blastocyst and in embryo implantation. We used reverse transcription-polymerase chain reaction, immunofluorescence, embryo coculture with Ishikawa uterine epithelial cell line, and embryo transfer technology to detect the expression of GPR30 in mouse embryos and the nongenomic effects of estrogen via GPR30 on blastocyst. We found that GPR30 is expressed in the mouse blastocyst, and its location is mostly consistent with the binding site of estrogen. Both estrogen and GPR30-specific agonist G-1 rapidly increase the intracellular Ca(2+) and phospholipase C activation in blastocyst cells, while GPR30-specific antagonist G-15 blocked this effect of estrogen. The pretreatment of G-15 on blastocysts lead to a lower attachment rate and implantation rate. Our data collectively suggested that GPR30 can mediate the fast effect of estrogen on blastocysts and play an important role in embryo implantation.


Subject(s)
Blastocyst/drug effects , Embryo Implantation/drug effects , Estradiol/pharmacology , Receptors, Estrogen/drug effects , Receptors, G-Protein-Coupled/drug effects , Animals , Blastocyst/metabolism , Calcium Signaling/drug effects , Cell Line , Coculture Techniques , Cyclopentanes/pharmacology , Embryo Culture Techniques , Enzyme Activation , Female , Mice , Pregnancy , Quinolines/pharmacology , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Time Factors , Type C Phospholipases/metabolism
18.
Reprod Sci ; 22(2): 223-34, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24925854

ABSTRACT

In endometrial epithelial cells, progesterone (P4) functions in regulating the cell structure and opposing the effects of estrogen. However, the mechanisms of P4 that oppose the effects of estrogen remain unclear. MicroRNAs (miRNAs) are important posttranscriptional regulators that are involved in various physiological and pathological processes. Whether P4 directly induces miRNA expression to antagonize estrogen in endometrial epithelium is unclear. In this study, total RNAs were extracted from endometrial epithelium of ovariectomized mice, which were treated with estrogen alone or a combination of estrogen and P4. MicroRNA high-throughput sequencing with bioinformatics analysis was used to identify P4-induced miRNAs, predict their potential target genes, and analyze their possible biological functions. We observed that 146 mature miRNAs in endometrial epithelial cells were significantly upregulated by P4. These miRNAs were extensively involved in multiple biological processes. The miRNA-145a demonstrated a possible function in the antiproliferative action of P4 on endometrial epithelial cells.


Subject(s)
Endometrium/drug effects , Epithelial Cells/drug effects , Estrogens/pharmacology , MicroRNAs/metabolism , Progesterone/pharmacology , Animals , Cell Proliferation/genetics , Computational Biology , Endometrium/metabolism , Epithelial Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Library , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Mice , MicroRNAs/genetics , Oligonucleotides/administration & dosage , Ovariectomy , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
19.
Huan Jing Ke Xue ; 35(2): 569-76, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24812949

ABSTRACT

The distribution and species of nutrients in the Daliaohe Estuary were studied in April, July and November, 2010. Concentrations of nutrients displayed obviously seasonal variability in the Daliaohe Estuary. Highest concentrations of PO4(3-) -P, DOP, DTP and TP were in April, and the lowest were in July. While the highest PP was in November, the lowest was in July. The contents of NO3(-) -N and NO2(-) -N reached the highest point in July, and the lowest was in April; however, the highest NH4(+) -N, DON and PN were in April and the lowest were in November. The main existing form of TN was NH4(+) -N in April, while in July and November NO3(-) -N was the dominant. The behavior of NO3(-) -N,DIN and TN was conservative in various seasons; the behavior of NO2(-) -N, NH4(+) -N and DON was conservative in April and November, while nonconservative in July, which indicated the exist of the extra source in the interior of the estuary. The SiO3(2-) of the Daliaohe Estuary was conservative, with the highest average concentration in November and the lowest in April.


Subject(s)
Estuaries , Nitrogen/analysis , Phosphorus/analysis , Seasons , Water/chemistry , China
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 43(2): 166-9, 2012 Mar.
Article in Chinese | MEDLINE | ID: mdl-22650023

ABSTRACT

OBJECTIVE: To study the effect of protein phosphatase 2A (PP2A) in the negative regulation of progesterone on the proliferation of mouse endometrial epithelial cells (EECs). METHODS: Mouse EECs were isolated and cultured in vitro, which were divided into four groups when they grown to confluence: control group (P4) was treated with 1 micromol/L progesterone only, group A, B and C were treated respectively with 1 micromol/L progesterone and different concentrations of okadaic acid (5 nmol/L, 10 nmol/L and 20 nmol/L). After 24 h, the numbers of cells in different phases of the cell cycle were counted with flow cytometry. RESULTS: The effect of OA on mouse EECs was concentration-dependent. Compared with control group of P4, the change of cell cycle procession in group A was not obvious. Lower proportion of cells in G1 and G2/M phase and higher proportion of cells in S phase in group B, higher proportion of cells in G1 and S phase and lower proportion of cells in G2/M phase in group C were observed. CONCLUSION: Adequate dose OA inhibiting PP2A could release the inhibitory effect of progesterone on proliferation of mouse EECs obviously, this suggested that PP2A was involved in the inhibitory effect of progesterone on proliferation of EECs by influencing the process of cell cycle.


Subject(s)
Cell Proliferation/drug effects , Endometrium/cytology , Epithelial Cells/cytology , Progesterone/pharmacology , Protein Phosphatase 2/antagonists & inhibitors , Animals , Cell Cycle , Cells, Cultured , Female , Mice , Okadaic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...