Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
MycoKeys ; 106: 303-325, 2024.
Article in English | MEDLINE | ID: mdl-38993357

ABSTRACT

Species of the family Microdochiaceae (Xylariales, Sordariomycetes) have been reported from worldwide, and collected from different plant hosts. The proposed new genus and two new species, viz., Macroidriella gen. nov., M.bambusae sp. nov. and Microdochiumaustrale sp. nov., are based on multi-locus phylogenies from a combined dataset of ITS rDNA, LSU, RPB2 and TUB2 with morphological characteristics. Microdochiumsinense has been collected from diseased leaves of Phragmitesaustralis and this is the first report of the fungus on this host plant. Simultaneously, we annotated 10,372 to 11,863 genes, identified 4,909 single-copy orthologous genes, and conducted phylogenomic analysis based on genomic data. A gene family analysis was performed and it will expand the understanding of the evolutionary history and biodiversity of the Microdochiaceae. The detailed descriptions and illustrations of species are provided.

2.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6582-6591, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212018

ABSTRACT

Non-alcoholic fatty liver disease(NAFLD) is a chronic metabolic condition with rapidly increasing incidence, becoming a public health issue of worldwide concern. Studies have shown that farnesoid X receptor(FXR)-based modulation of downstream targets can improve liver function and metabolic status in the patients with NAFLD and may be a potential drug target for treating this di-sease. Great progress has been achieved in the development of drugs targeting FXR for the treatment of NAFLD. A number of studies have explored the traditional Chinese medicine and their active ingredients for the treatment of NAFLD via FXR considering the high safety and efficacy and mild side effects. This paper systematically describes the mechanism of traditional Chinese medicines in the treatment of NAFLD via FXR and the downstream targets, aiming to provide precise targets for the drug development and clinical treatment of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liver , Medicine, Chinese Traditional/adverse effects , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
3.
Ann Transl Med ; 10(2): 32, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35282070

ABSTRACT

Background: Oxidative stress and neuroinflammation play crucial roles in the progression of neonatal hypoxic-ischemic brain damage (HIBD). Genistein, a natural phytoestrogen, has been found to protect against ischemic brain injury. However, its effects and potential mechanisms in HIBD have not yet been explored. Methods: A neonatal mouse model of hypoxia-ischemia (HI) and a cell model of oxygen-glucose deprivation/reperfusion (OGD/R) were employed. In the in vivo study, genistein (10 mg/kg; ip) was administered in mice once daily for 3 consecutive days before the operation and once immediately after HI. The effects of genistein treatment on acute brain damage and long-term responses were evaluated. Neuronal injury and apoptosis were estimated using hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. The expression of apoptosis-related proteins were also measured by Western blot analysis. Dihydroethidium (DHE) staining and glutathione (GSH) and malondialdehyde (MDA) production were determined to assess the extent of oxidative stress. The messenger RNA (mRNA) levels of proinflammatory cytokines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the extent of neuroinflammation. In the in vitro study, cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays, as well as propidium iodide (PI) staining, were performed to analyse the neuroprotective effects of genistein on primary cortical neurons. Western blot assays were used to detect the levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), phosphorylated inhibitor kappa B-α (p-IκB-α) and phosphorylated nuclear factor-kappa B (p-NF-κB) both in vivo and in vitro. Results: Our results showed that genistein treatment effectively reduced cerebral infarction, attenuated neuronal injury and apoptosis, and contributed to the long-term recovery of neurological outcomes and brain atrophy in neonatal HIBD mice. Moreover, genistein ameliorated HIBD-induced oxidative stress and neuroinflammation. Meanwhile, genistein significantly increased cell viability, reversed neuronal injury and decreased cell apoptosis after OGD/R injury. Finally, the activation of the Nrf2/HO-1 pathway and inhibition of the NF-κB pathway by genistein were verified in the brain tissues of neonatal mice subjected to HIBD and in primary cortical neurons exposed to OGD/R. Conclusions: Genistein exerted neuroprotective effects on HIBD by attenuating oxidative stress and neuroinflammation through the Nrf2/HO-1 and NF-κB signalling pathways.

4.
J Chem Neuroanat ; 115: 101967, 2021 09.
Article in English | MEDLINE | ID: mdl-33992725

ABSTRACT

Previous studies have demonstrated that the activation of delta opioid receptors is neuroprotective against neonatal hypoxia-ischemia (HI) brain injury. The aim of this study was to investigate the neuroprotective effects of biphalin, a dimeric opioid peptide, in a mouse model of neonatal HI and the underlying mechanisms. On postnatal day 10, mouse pups were subjected to unilateral carotid artery ligation followed by 1 h of hypoxia (10 % O2 in N2). For treatment, biphalin (5 mg/kg, 10 mg/kg, 20 mg/kg) was administered intraperitoneally immediately after HI. The opioid antagonist naloxone or phosphatidylinositol-3-kinase inhibitor Ly294002 was administered to determine the underlying mechanisms. Infarct volume, brain edema, phosphorylated Akt and apoptosis-related proteins levels were evaluated by using a combination of 2,3,5-triphenyltetrazolium chloride staining, brain water content and Western blotting at 24 h after HI. The long-term effects of biphalin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests at 3 weeks post-HI. Biphalin (10 mg/kg) significantly reduced the infarct volume and ameliorated brain edema. Biphalin also had long-term protective effects against the loss of ipsilateral brain tissue and resulted in improvements in neurobehavioral outcomes. However, naloxone or Ly294002 abrogated the neuroprotective effects of biphalin. Furthermore, biphalin treatment significantly preserved phosphorylated Akt expression, increased Bcl-2 levels, and decreased Bax and cleaved caspase 3 levels after HI. These effects were also reversed by naloxone and Ly294002 respectively. In conclusion, biphalin protects against HI brain injury in neonatal mice, which might be through activation of the opioid receptor/phosphatidylinositol-3-kinase/Akt signaling pathway.


Subject(s)
Enkephalins/therapeutic use , Hypoxia-Ischemia, Brain/drug therapy , Neuroprotective Agents/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Enkephalins/pharmacology , Hypoxia-Ischemia, Brain/metabolism , Mice , Narcotic Antagonists/pharmacology , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , Polyethylene Terephthalates/pharmacology
5.
Zhongguo Zhong Yao Za Zhi ; 39(16): 3048-53, 2014 Aug.
Article in Chinese | MEDLINE | ID: mdl-25509285

ABSTRACT

To establish induction and liquid culture system for hairy roots of Danshen (Salvia miltiorrhiza), Agrobacterium rhizogenes A4, LBA9402, 15834 as test bacterium were used to infect aseptic leaves of Danshen. The hairy roots were induced and positive transgenic hairy roots were selected with PCR using rolB and rolC as the target gene. Then hairy roots of S. miltiorrhiza were harvested and salvianolic acids were extracted with 70% methanol containing 1% formic acid. The content of salvianolic acid B (SalB) and rosmarinic acid (RA) were determined by HPLC. According to the above research results, the Danshen hairy roots induced by A. rhizogenes LBA9402 were inoculated into the following group of culture media: MSOH, MS, B5, and 6,7-V liquid media. Then the same methods of extraction and determination for the content of Danshen hairy roots were adopted. Last, the hairy roots of S. miltiorrhiza induced by A. rhizogenes LBA9402 were inoculated into the MSOH liquid media with different pH values. The content of salvianolic acid were extracted with 70% methanol containing 1% formic acid and determined by HPLC. As a result, three kinds of A. rhizogenes A4, LBA9402, 15834 could induce hairy roots and Ri plasmids were integrated into the genome of S. miltiorrhiza by PCR. Danshen hairy roots induced by A. rhizogenes LBA9402 and A4 produced much more salvianolic acid, which were (3.27 ± 0.37)% [including (1.04 ±0.36)% of RA and (2.22 ± 0.29)% of SalB] and (3.17 ± 0.20)% [including (0.92 ± 0.31)% of RA and (2.25 ± 0.26)% of SalB], respectively. Hairy roots induced by A. rhizogenes LBA9402 when they were cultured in MSOH liquid media produced much more salvianolic acid, which was (4.56 ± 0.36)%, including (1.12 ± 0.26)% of RA and (3.44 ± 0.23)% of SalB. Hairy roots induced by A. rhizogenes LBA9402 produced the most salvianolic acid when they were cultured in MSOH liquid media with the pH value 4.81, which was 4.85%, including 1.16% of RA and 3.69% of SalB. So Danshen hairy roots induced by A. rhizogenes LBA9402 and A4 produced much more salvianolic acid when they were cultured in MSOH liquid media with the pH value 4.81. The research had established the foundation on genetic engineering to improve the quality of S. miltiorrhiza.


Subject(s)
Cell Culture Techniques/methods , Salvia miltiorrhiza/growth & development , Agrobacterium/physiology , Benzofurans/analysis , Benzofurans/metabolism , Cell Culture Techniques/instrumentation , Cinnamates/analysis , Cinnamates/metabolism , Culture Media/chemistry , Culture Media/metabolism , Depsides/analysis , Depsides/metabolism , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Salvia miltiorrhiza/chemistry , Salvia miltiorrhiza/metabolism , Salvia miltiorrhiza/microbiology , Rosmarinic Acid
6.
Yao Xue Xue Bao ; 46(11): 1352-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22260028

ABSTRACT

Danshen (Salvia miltiorrhiza Bunge) hairy roots were obtained by infecting Danshen leaves with Agrobacterium rhizogenes 9402. Besides rosmarinic acid (RA) and salvianolic acid B (SAB), the hairy root could also produce salvianolic acid K (SAK), salvianolic acid L, ethyl salvianolic acid B (ESAB), methyl salvianolic acid B (MSAB), and a compound with a molecular weight of 538 (compound 538) identified by using LC-MS. Effects of methyl jasmonate (MeJA) and yeast elicitor (YE) on the accumulation of these compounds had been investigated. MeJA increased the accumulation of SAB, RA, SAK, and compound 538 from 4.21%, 2.48%, 0.29%, and 0.01% of dry weight to 7.11%, 3.38%, 0.68%, and 0.04%, respectively. YE stimulated the biosynthesis of RA from 2.83% to 5.71%, but depressed the synthesis of SAB, SAK and compound 538. It was indicated in all the results that these Danshen hairy roots could be used as alternative resources to produce salvianolic acids. Analysis of the content variation of these compounds after elicitation suggested that SAK and compound 538 might be the intermediates in the biosynthesis from RA to SAB in Danshen hairy roots.


Subject(s)
Acetates/pharmacology , Alkenes/analysis , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Polyphenols/analysis , Polyphenols/biosynthesis , Salvia miltiorrhiza/chemistry , Yeasts/chemistry , Benzofurans/analysis , Cinnamates/analysis , Depsides/analysis , Phenylpropionates/analysis , Plant Growth Regulators/pharmacology , Plant Roots/chemistry , Plants, Medicinal/chemistry , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...