Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels ; 13: 133, 2020.
Article in English | MEDLINE | ID: mdl-32760447

ABSTRACT

BACKGROUND: Lupeol exhibits novel physiological and pharmacological activities, such as anticancer and immunity-enhancing activities. However, cytotoxicity remains a challenge for triterpenoid overproduction in microbial cell factories. As lipophilic and relatively small molecular compounds, triterpenes are generally secreted into the extracellular space. The effect of increasing triterpene efflux on the synthesis capacity remains unknown. RESULTS: In this study, we developed a strategy to enhance triterpene efflux through manipulation of lipid components in Y. lipolytica by overexpressing the enzyme Δ9-fatty acid desaturase (OLE1) and disturbing phosphatidic acid phosphatase (PAH1) and diacylglycerol kinase (DGK1). By this strategy combined with two-phase fermentation, the highest lupeol production reported to date was achieved, where the titer in the organic phase reached 381.67 mg/L and the total production was 411.72 mg/L in shake flasks, exhibiting a 33.20-fold improvement over the initial strain. Lipid manipulation led to a twofold increase in the unsaturated fatty acid (UFA) content, up to 61-73%, and an exceptionally elongated cell morphology, which might have been caused by enhanced membrane phospholipid biosynthesis flux. Both phenotypes accelerated the export of toxic products to the extracellular space and ultimately stimulated the capacity for triterpenoid synthesis, which was proven by the 5.11-fold higher ratio of extra/intracellular lupeol concentrations, 2.79-fold higher biomass accumulation and 2.56-fold higher lupeol productivity per unit OD in the modified strains. This strategy was also highly efficient for the biosynthesis of other triterpenes and sesquiterpenes, including α-amyrin, ß-amyrin, longifolene, longipinene and longicyclene. CONCLUSIONS: In conclusion, we successfully created a high-yield lupeol-producing strain via lipid manipulation. We demonstrated that the enhancement of lupeol efflux and synthesis capacity was induced by the increased UFA content and elongated cell morphology. Our study provides a novel strategy to promote the biosynthesis of valuable but toxic products in microbial cell factories.

2.
Microb Cell Fact ; 18(1): 77, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31053076

ABSTRACT

BACKGROUND: Betulinic acid is a pentacyclic lupane-type triterpenoid and a potential antiviral and antitumor drug, but the amount of betulinic acid in plants is low and cannot meet the demand for this compound. Yarrowia lipolytica, as an oleaginous yeast, is a promising microbial cell factory for the production of highly hydrophobic compounds due to the ability of this organism to accumulate large amounts of lipids that can store hydrophobic products and supply sufficient precursors for terpene synthesis. However, engineering for the heterologous production of betulinic acid and related triterpenoids has not developed as systematically as that for the production of other terpenoids, thus the production of betulinic acid in microbes remains unsatisfactory. RESULTS: In this study, we applied a multimodular strategy to systematically improve the biosynthesis of betulinic acid and related triterpenoids in Y. lipolytica by engineering four functional modules, namely, the heterogenous CYP/CPR, MVA, acetyl-CoA generation, and redox cofactor supply modules. First, by screening 25 combinations of cytochrome P450 monooxygenases (CYPs) and NADPH-cytochrome P450 reductases (CPRs), each of which originated from 5 different sources, we selected two optimal betulinic acid-producing strains. Then, ERG1, ERG9, and HMG1 in the MVA module were overexpressed in the two strains, which dramatically increased betulinic acid production and resulted in a strain (YLJCC56) that exhibited the highest betulinic acid yield of 51.87 ± 2.77 mg/L. Then, we engineered the redox cofactor supply module by introducing NADPH- or NADH-generating enzymes and the acetyl-CoA generation module by directly overexpressing acetyl-CoA synthases or reinforcing the ß-oxidation pathway, which further increased the total triterpenoid yield (the sum of the betulin, betulinic acid, betulinic aldehyde yields). Finally, we engineered these modules in combination, and the total triterpenoid yield reached 204.89 ± 11.56 mg/L (composed of 65.44% betulin, 23.71% betulinic acid and 10.85% betulinic aldehyde) in shake flask cultures. CONCLUSIONS: Here, we systematically engineered Y. lipolytica and achieved, to the best of our knowledge, the highest betulinic acid and total triterpenoid yields reported in microbes. Our study provides a suitable reference for studies on heterologous exploitation of P450 enzymes and manipulation of triterpenoid production in Y. lipolytica.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Metabolic Engineering/methods , Triterpenes/metabolism , Yarrowia/enzymology , Pentacyclic Triterpenes , Betulinic Acid
3.
ACS Synth Biol ; 8(5): 968-975, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31063692

ABSTRACT

Limonene, a plant-derived natural cyclic monoterpene, is widely used in the pharmaceutical, food, and cosmetics industries. The conventional limonene biosynthetic (CLB) pathway in engineered Saccharomyces cerevisiae consists of heterologous limonene synthase (LS) using endogenous substrate geranyl diphosphate (GPP) and suffers from poor production of limonene. In this study, we report on an orthogonal engineering strategy in S. cerevisiae for improving the production of limonene. We reconstructed the orthogonal limonene biosynthetic (OLB) pathway composed of SlNDPS1 that catalyzes IPP and DMAPP to NPP ( cis-GPP) and plant LS that converts NPP to limonene. We find that the OLB pathway is more efficient for production of limonene than the CLB pathway. When expression of the competing gene ERG20 was chromosomally regulated by the glucose-sensing promoter HXT1, the OLB pathway-harboring strain produced 917.7 mg/L of limonene in fed-batch fermentation, a 6-fold increase of the CLB pathway, representing the highest titer reported to date. Orthogonal engineering exhibits great potential for production of terpenoids in S. cerevisiae.


Subject(s)
Limonene/metabolism , Metabolic Engineering/methods , Saccharomyces cerevisiae/metabolism , Batch Cell Culture Techniques , Biomass , Citrus/genetics , Geranyltranstransferase/genetics , Glucose Transport Proteins, Facilitative/genetics , Intramolecular Lyases/genetics , Plant Proteins/genetics , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/genetics
4.
ACS Synth Biol ; 8(4): 724-733, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30779549

ABSTRACT

Synthetic chimeric biological system offers opportunities to illuminate principles of designing life, and a primary step is constructing synthetic chimeric pathways. Here, we constructed yeast chimeric pathways by transferring the genes from  Saccharomyces cerevisiae pathways into another budding yeast Yarrowia lipolytica for in vivo assembly. We efficiently diversified gene option, combination, localization order, and copy number as expected. Convergence of two yeast pathways, especially mevalonic acid (MVA) pathways, remarkably enhanced synthesis of a lipophilic terpene, lycopene. In the selected champion strain with 50-fold of enhanced lycopene production, the chimeric MVA pathway gathered three S. cerevisiae genes with particular copies and locations. Amazingly, therein we discovered distinct transcriptional up-regulation of three significant pathways correlated with acetyl-CoA supply and tuning of cellular lipid amounts and composition. Modulating these pathways further improved lycopene production to 150-fold, a final 259 mg/L (approximately 80 mg/g DCW). We primarily showed the capacity of boosting the synthesis of lipophilic products with yeast chimeric pathways.


Subject(s)
Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Terpenes/metabolism , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , Lycopene/metabolism , Mevalonic Acid/metabolism , Transcription, Genetic/genetics , Up-Regulation , Yarrowia/genetics , Yarrowia/metabolism
5.
Microb Cell Fact ; 17(1): 62, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29678175

ABSTRACT

BACKGROUND: The oleaginous yeast Yarrowia lipolytica is a promising microbial cell factory due to their biochemical characteristics and native capacity to accumulate lipid-based chemicals. To create heterogenous biosynthesis pathway and manipulate metabolic flux in Y. lipolytica, numerous studies have been done for developing synthetic biology tools for gene regulation. CRISPR interference (CRISPRi), as an emerging technology, has been applied for specifically repressing genes of interest. RESULTS: In this study, we established CRISPRi systems in Y. lipolytica based on four different repressors, that was DNase-deactivated Cpf1 (dCpf1) from Francisella novicida, deactivated Cas9 (dCas9) from Streptococcus pyogenes, and two fusion proteins (dCpf1-KRAB and dCas9-KRAB). Ten gRNAs that bound to different regions of gfp gene were designed and the results indicated that there was no clear correlation between the repression efficiency and targeting sites no matter which repressor protein was used. In order to rapidly yield strong gene repression, a multiplex gRNAs strategy based on one-step Golden-brick assembly technology was developed. High repression efficiency 85% (dCpf1) and 92% (dCas9) were achieved in a short time by making three different gRNAs towards gfp gene simultaneously, which avoided the need of screening effective gRNA loci in advance. Moreover, two genes interference including gfp and vioE and three genes repression including vioA, vioB and vioE in protodeoxy-violaceinic acid pathway were also realized. CONCLUSION: Taken together, successful CRISPRi-mediated regulation of gene expression via four different repressors dCpf1, dCas9, dCpf1-KRAB and dCas9-KRAB in Y. lipolytica is achieved. And we demonstrate a multiplexed gRNA targeting strategy can efficiently achieve transcriptional simultaneous repression of several targeted genes and different sites of one gene using the one-step Golden-brick assembly. This timesaving method promised to be a potent transformative tool valuable for metabolic engineering, synthetic biology, and functional genomic studies of Y. lipolytica.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Expression/genetics , RNA, Guide, Kinetoplastida/genetics , Yarrowia/genetics , Yarrowia/metabolism
6.
Metab Eng ; 38: 19-28, 2016 11.
Article in English | MEDLINE | ID: mdl-27267408

ABSTRACT

Biosynthesis of alkanes in microbial foundries offers a sustainable and green supplement to traditional fossil fuels. The dynamic equilibrium of fatty aldehydes, key intermediates, played a critical role in microbial alkanes production, due to the poor catalytic capability of aldehyde deformylating oxygenase (ADO). In our study, exploration of competitive pathway together with multi-modular optimization was utilized to improve fatty aldehydes balance and consequently enhance alkanes formation in Escherichia coli. Endogenous fatty alcohol formation was supposed to be competitive with alkane production, since both of the two routes consumed the same intermediate-fatty aldehyde. Nevertheless, in our case, alkanes production in E. coli was enhanced from trace amount to 58.8mg/L by the facilitation of moderate fatty alcohol biosynthesis, which was validated by deletion of endogenous aldehyde reductase (AHR), overexpression of fatty alcohol oxidase (FAO) and consequent transcriptional assay of aar, ado and adhP genes. Moreover, alkanes production was further improved to 81.8mg/L, 86.6mg/L or 101.7mg/L by manipulation of fatty acid biosynthesis, lipids degradation or electron transfer system modules, which directly referenced to fatty aldehydes dynamic pools. A titer of 1.31g/L alkanes was achieved in 2.5L fed-batch fermentation, which was the highest reported titer in E. coli. Our research has offered a reference for chemical overproduction in microbial cell factories facilitated by exploring competitive pathway.


Subject(s)
Alkanes/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/physiology , Genetic Enhancement/methods , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Alkanes/isolation & purification , Biosynthetic Pathways/genetics , Gene Expression Regulation, Bacterial/genetics
7.
Metab Eng ; 29: 113-123, 2015 May.
Article in English | MEDLINE | ID: mdl-25773521

ABSTRACT

Engineered microbes offer the opportunity to design and implement artificial molecular pathways for renewable production of tailored chemical commodities. Targeted biosynthesis of odd-chain fatty alcohols is very challenging in microbe, due to the specificity of fatty acids synthase for two-carbon unit elongation. Here, we developed a novel strategy to directly tailor carbon number in fatty aldehydes formation step by incorporating α-dioxygenase (αDOX) from Oryza sativa (rice) into Escherichia coli αDOX oxidizes Cn fatty acids (even-chain) to form Cn-1 fatty aldehydes (odd-chain). Through combining αDOX with fatty acyl-acyl carrier protein (-ACP) thioesterase (TE) and aldehyde reductase (AHR), the medium odd-chain fatty alcohols profile (C11, C13, C15) was firstly established in E. coli. Also, medium even-chain alkanes (C12, C14) were obtained by substitution of AHR to aldehyde decarbonylase (AD). The titer of odd-chain fatty alcohols was improved from 7.4mg/L to 101.5mg/L in tube cultivation by means of fine-tuning endogenous fatty acyl-ACP TE (TesA'), αDOX, AHRs and the genes involved in fatty acids metabolism pathway. Through high cell density fed-batch fermentation, a titer of 1.95g/L odd-chain fatty alcohols was achieved, which was the highest reported titer in E. coli. Our system has greatly expanded the current microbial fatty alcohols profile that provides a new brand solution for producing complex and desired molecules in microbes.


Subject(s)
Escherichia coli , Fatty Alcohols/metabolism , Oryza/genetics , Plant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Oryza/enzymology , Plant Proteins/biosynthesis , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...