Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mater Today Bio ; 26: 101094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38854952

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.

2.
Polymers (Basel) ; 16(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38611143

ABSTRACT

In this study, particle loading, polyfluorinated alkyl silanes (PFAS or FAS) content, superhydrophobicity, and crack formation for nanocomposite coatings created by the spray coating process were investigated. The formulations comprised hydrophobic silica, epoxy resin, and fluorine-free or FAS constituents. The effect of FAS content and FAS-free compositions on the silica and epoxy coatings' chemistry, topography, and wetting properties was also studied. All higher particle loadings (~30 wt.%) showed superhydrophobicity, while lower particle loading formulations did not show superhydrophobic behavior until 13% wt. FAS content. The improved water repellency of coatings with increased FAS (low particle loadings) was attributed to a combination of chemistry and topography as described by the Cassie state. X-ray photoelectron spectroscopy (XPS) spectra showed fluorine enrichment on the coating surface, which increases the intrinsic contact angle. However, increasing the wt.% of FAS in the final coating resulted in severe crack formation for higher particle loadings (~30 wt.%). The results show that fluorine-free and crack-free coatings exhibiting superhydrophobicity can be created.

3.
Photoacoustics ; 30: 100462, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36865670

ABSTRACT

Simultaneous spatio-temporal description of tumor microvasculature, blood-brain barrier, and immune activity is pivotal to understanding the evolution mechanisms of highly aggressive glioblastoma, one of the most common primary brain tumors in adults. However, the existing intravital imaging modalities are still difficult to achieve it in one step. Here, we present a dual-scale multi-wavelength photoacoustic imaging approach cooperative with/without unique optical dyes to overcome this dilemma. Label-free photoacoustic imaging depicted the multiple heterogeneous features of neovascularization in tumor progression. In combination with classic Evans blue assay, the microelectromechanical system based photoacoustic microscopy enabled dynamic quantification of BBB dysfunction. Concurrently, using self-fabricated targeted protein probe (αCD11b-HSA@A1094) for tumor-associated myeloid cells, unparalleled imaging contrast of cells infiltration associated with tumor progression was visualized by differential photoacoustic imaging in the second near-infrared window at dual scale. Our photoacoustic imaging approach has great potential for tumor-immune microenvironment visualization to systematically reveal the tumor infiltration, heterogeneity, and metastasis in intracranial tumors.

4.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904483

ABSTRACT

Superhydrophilic coatings based on a hydrophilic silica nanoparticle suspension and Poly (acrylic acid) (PAA) were prepared by dip coating. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to examine the morphology of the coating. The effect of surface morphology on the dynamic wetting behavior of the superhydrophilic coatings was studied by changing the silica suspension concentration from 0.5% wt. to 3.2% wt. while keeping the silica concentration in the dry coating constant. The droplet base diameter and dynamic contact angle with respect to time were measured using a high-speed camera. A power law was found to describe the relationship between the droplet diameter and time. A significantly low experimental power law index was obtained for all the coatings. Both roughness and volume loss during spreading were suggested to be responsible for the low index values. The water adsorption of the coatings was found to be the reason for the volume loss during spreading. The coatings exhibited good adherence to the substrates and retention of hydrophilic properties under mild abrasion.

5.
Polymers (Basel) ; 14(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36365655

ABSTRACT

The effect of particle loading on the wetting properties of coatings was investigated by modifying a coating formulation based on hydrophilic silica nanoparticles and poly (acrylic acid) (PAA). Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Wettability was improved with an increase in particle loading. The resulting coatings showed superhydrophilic (SH) behavior when the particle loading was above 53 vol. %. No new peaks were detected by attenuated total reflection (ATR-FTIR). The surface topography of the coatings was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for superhydrophilic behavior. The surface chemistry was found to be a primary factor determining the wetting properties of the coatings. Adhesion of the coatings to the substrate was tested by tape test and found to be durable. The antifogging properties of the coatings were evaluated by exposing the films under different environmental conditions. The SH coatings showed anti-fogging behavior. The transparency of the coatings was significantly improved with the increase in particle loading. The coatings showed good transparency (>85% transmission) when the particle loading was above 84 vol. %.

6.
ACS Appl Mater Interfaces ; 13(48): 58096-58103, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34813281

ABSTRACT

Protein fouling on critical biointerfaces causes significant public health and clinical ramifications. Multiple strategies, including superhydrophobic (SHP) surfaces and coatings, have been explored to mitigate protein adsorption on solid surfaces. SHP materials with underwater air plastron (AP) layers hold great promise by physically reducing the contact area between a substrate and protein molecules. However, sustaining AP stability or lifetime is crucial in determining the durability and long-term applications of SHP materials. This work investigated the effect of protein on the AP stability using model SHP substrates, which were prepared from a mixture of silica nanoparticles and epoxy. The AP stability was determined using a submersion test with real-time visualization. The results showed that AP stability was significantly weakened by protein solutions compared to water, which could be attributed to the surface tension of protein solutions and protein adsorption on SHP substrates. The results were further examined to reveal the correlation between protein fouling and accelerated AP dissipation on SHP materials by confocal fluorescent imaging, surface energy measurement, and surface robustness modeling of the Cassie-Baxter to Wenzel transition. The study reveals fundamental protein adsorption mechanisms on SHP materials, which could guide future SHP material design to better mitigate protein fouling on critical biointerfaces.


Subject(s)
Biomimetic Materials/chemistry , Proteins/chemistry , Adsorption , Air , Epoxy Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Materials Testing , Nanoparticles/chemistry , Particle Size , Silicon Dioxide/chemistry , Surface Properties
7.
Med Sci Monit ; 27: e929346, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34257265

ABSTRACT

BACKGROUND Emodin has been widely used in traditional Chinese medicine, but few studies have tried to understand the mechanism of its anti-hypercholesterolemic effect. MATERIAL AND METHODS To delineate the underlying pathways, high-cholesterol diet (HCD)-fed Sprague-Dawley rats were orally administrated emodin or the lipid-lowering medicine simvastatin. Emodin was administered at 10, 30, or 100 mg/kg, while simvastatin was administered at 10 mg/kg. Parameters measured included lipid profiles (serum total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, aorta endothelium-dependent vasorelaxation in response to acetylcholine, and nitric oxide (NO) production. RT-qPCR and western blotting were performed to evaluate aortic endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and hepatic LDL receptor (LDLR). Indices of liver and serum oxidation were also measured. RESULTS The atherogenic index was increased by the HCD but significantly reduced in all treatment groups. The HCD-fed experimental group treated with emodin at 10 mg/kg had significantly lower serum total-C and LDL-C and improved aorta vasorelaxation and enhanced NO production. Also, emodin significantly attenuated the lipid profiles and restored endothelial function, as reflected by upregulated expression of hepatic LDLR and p-eNOS, respectively. Furthermore, emodin at 10 mg/kg significantly enhanced superoxide dismutase activity, lowered the malondialdehyde level in both liver and serum, and enhanced catalase activity in serum. CONCLUSIONS The ability of emodin to inhibit hypercholesterolemia in HCD-fed rats was associated with lower serum total-C and LDL-C, restoration of aortic endothelial function, and improved antioxidant capacity. Low-dose emodin showed better protection of aortic endothelium and better antioxidant activity than did higher doses.


Subject(s)
Disease Models, Animal , Emodin/pharmacology , Hypercholesterolemia/metabolism , Nitric Oxide Synthase Type III/metabolism , Animals , Antioxidants , Aorta/metabolism , Atherosclerosis/metabolism , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Endothelium, Vascular/drug effects , Hyperlipidemias/drug therapy , Lipids/blood , Nitric Oxide/metabolism , Protein Kinase Inhibitors , Rats , Rats, Sprague-Dawley , Receptors, LDL/metabolism , Triglycerides/blood
8.
ACS Appl Mater Interfaces ; 13(18): 21097-21107, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33908256

ABSTRACT

Nanobubbles (NBs) have recently gained interest in cancer imaging and therapy due to the fact that nanoparticles with the size range of 1-1000 nm can extravasate into permeable tumor types through the enhanced permeability and retention (EPR) effect. However, the therapeutic study of NBs was only limited to drug delivery or cavitation. Herein, we developed ultrasound-evoked massive NB explosion to strikingly damage the surrounding cancer. The dual-function agent allows synergistic mechanical impact and photodynamic therapy of the tumors and enhances imaging contrast. Moreover, the mechanical explosion improved the light delivery efficiency in biological tissue to promote the effect of photodynamic therapy. Under ultrasound/photoacoustic imaging guidance, we induced on-the-spot bubble explosion and photodynamic therapy of tumors at a depth of centimeters in vivo. The mechanical impact of the explosion can enhance delivery of the photosensitizers. Ultrasound explicitly revealed the cancer morphology and exhibited fast NB perfusion. Generated mechanical damage and release of mixture agents demonstrated remarkable synergetic anticancer effects on deep tumors. This finding also offers a new approach and insight into treating cancers.


Subject(s)
Microbubbles , Molecular Imaging , Nanostructures , Neoplasms, Experimental/therapy , Photochemotherapy/methods , Ultrasonic Waves , Animals , Cell Line, Tumor , Cell Proliferation , Combined Modality Therapy , Humans , Mice , Neoplasms, Experimental/pathology , RAW 264.7 Cells , Rats
9.
Nat Nanotechnol ; 16(4): 455-465, 2021 04.
Article in English | MEDLINE | ID: mdl-33526836

ABSTRACT

Photodynamic therapy and adipose browning induction are two promising approaches to reverse obesity. The former strategy acts rapidly and locally, whereas the latter has a more gradual and widespread effect. Despite their complementarity, they have rarely been combined and imaged non-invasively in vivo. Here we introduce an adipose-targeting hepatitis B core protein complex that contains a traceable photosensitizer (ZnPcS4 (zinc phthalocyanine tetrasulfonate)) and a browning agent (rosiglitazone) that allows simultaneous photodynamic and browning treatments, with photoacoustic molecular imaging. After intravenous injection in obese mice, the complex binds specifically to white adipose tissues, especially those rich in blood supply, and drives adipose reduction thanks to the synergy of ZnPcS4 photodynamics and rosiglitazone browning. Using photoacoustic molecular imaging, we could monitor the changes induced by the treatment, which included complex activity, lipid catabolism and angiogenesis. Our findings demonstrate the anti-obesity potential of our feedback-based synergic regimen orchestrated by the targeted hepatitis B core complex.


Subject(s)
Adipose Tissue, White/drug effects , Obesity/therapy , Photoacoustic Techniques , Viral Core Proteins/chemistry , Adipose Tissue, White/diagnostic imaging , Adipose Tissue, White/metabolism , Animals , Hepatitis B/genetics , Humans , Indoles/chemistry , Indoles/pharmacology , Mice , Molecular Imaging/methods , Obesity/metabolism , Obesity/pathology , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Rosiglitazone/pharmacology , Viral Core Proteins/pharmacology
10.
Cancer Lett ; 496: 169-178, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32987139

ABSTRACT

Nanoparticle-based photothermal ablation (PTA) has been intensively investigated recently. However, the poor biocompatibility of most PTA agents and potential long-term toxicity obstruct their clinical translation. Meanwhile, previous PTA studies are limited to surface tumors because of insufficient light penetration depth of near-infrared (NIR) light for deep abdominal tumors. Therefore, minimally invasive PTA combined with biocompatible agents may pave a promising way to treat deep orthotopic hepatocellular carcinoma (HCC). Herein, a multifunctional agent based on superparamagnetic iron oxide (SPIO) and new indocyanine green (IR820) was constructed with good biocompatibility. Outstanding fluorescence, photoacoustic and magnetic resonance imaging capabilities were observed in vitro. Additionally, in vivo results indicated that early-stage HCC (diameter less than 2 mm) could be effectively detected by this agent. Furthermore, for the first time, we developed minimally invasive laparoscopic-assisted photothermal ablation (L-A PTA) method coupled with this agent to completely ablate orthotopic HCC in nude mice model, neither recurrences nor obvious side effects were observed during the experiments. Remarkable shrinkage of primary tumor and disappearance of intrahepatic metastasis were also observed. In summary, minimally invasive L-A PTA is an effective preoperative neoadjuvant treatment for HCC.


Subject(s)
Carcinoma, Hepatocellular/therapy , Laparoscopy/methods , Liver Neoplasms/therapy , Minimally Invasive Surgical Procedures/methods , Neoadjuvant Therapy/methods , Photothermal Therapy/methods , Preoperative Care , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Entropy (Basel) ; 22(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-33286280

ABSTRACT

With increasing complexity of electronic warfare environments, smart jammers are beginning to play an important role. This study investigates a method of power minimization-based jamming waveform design in the presence of multiple targets, in which the performance of a radar system can be degraded according to the jammers' different tasks. By establishing an optimization model, the power consumption of the designed jamming spectrum is minimized. The jamming spectrum with power control is constrained by a specified signal-to-interference-plus-noise ratio (SINR) or mutual information (MI) requirement. Considering that precise characterizations of the radar-transmitted spectrum are rare in practice, a single-robust jamming waveform design method is proposed. Furthermore, recognizing that the ground jammer is not integrated with the target, a double-robust jamming waveform design method is studied. Simulation results show that power minimization-based single-robust jamming spectra can maximize the power-saving performance of smart jammers in the local worst-case scenario. Moreover, double-robust jamming spectra can minimize the power consumption in the global worst-case scenario and provide useful guidance for the waveform design of ground jammers.

12.
Biomater Sci ; 8(15): 4322-4333, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32602480

ABSTRACT

Early diagnosis and therapy of hepatocellular carcinoma (HCC) is critical to improve the five-year survival rates of patients. Theranostic agents synergized with photothermal ablation are expected to realize the early detection and treatment of orthotopic HCC. However, conventional metallic nanoagents are limited by their potential bio-toxicity to surrounding normal organs. Recently, endogenous biological melanin pigments have been utilized to develop nanoplatforms due to their excellent biocompatibility and degradability. Whereas, the insufficient capability of PEGylated melanin nanoparticles (PEG-MNPs) in photoacoustic (PA) imaging limits their further biomedical applications. Paradoxically, it is difficult to meet these two different requirements. Herein, a multifunctional nanoagent based on melanin (MNPs) conjugating the near-infrared (NIR) dye IR820 was successfully designed and fabricated. Encapsulation by polyethylene glycol (PEG) renders the solubility in water and allows the physical absorption of IR820 for enhanced photoacoustic (PA) performance and photothermal therapy. Besides, PEG coating on the surface of IR820-PEG-MNPs resulted in a reduction in swallowing in the reticuloendothelial system of the liver and spleen, prolonging the circulation time in the blood and increasing the accumulation in the tumor. The IR820-PEG-MNPs displayed satisfactory PA and T1-weighted magnetic resonance imaging (MRI) signals in aqueous solution as well as strong photothermal efficiency. Compared with prior injection, PA/MR signals of the tumor region were enhanced by 4.13- and 1.60-fold, respectively, which could effectively detect lesions smaller than ∼1.8 mm. Furthermore, the high photothermal conversion efficiency (40.2%) endowed the IR820-PEG-MNPs with the capability of selectively ablating tumors in orthotopic HCC mouse models under the guidance of PA/MR imaging. This work broadens the biomedical applications of melanin-based agent, which are promising for the precise diagnosis of orthotopic micro HCC and imaging guided photothermal ablation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Photoacoustic Techniques , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Melanins , Mice , Precision Medicine , Theranostic Nanomedicine
13.
Theranostics ; 10(2): 816-828, 2020.
Article in English | MEDLINE | ID: mdl-31903152

ABSTRACT

Ischemic stroke (IS) is one of the leading causes of death and accounts for 85% of stroke cases. Since the symptoms are not obvious, diagnosis of IS, particularly at an early stage, is a great challenge. Photoacoustic imaging combines high sensitivity of optical imaging and fine resolution of ultrasonography to non-invasively provide structural and functional information of IS. Methods: We adopted three rapid photoacoustic imaging systems with varying characteristics, including a portable handheld photoacoustic system, high-sensitivity bowl-shaped array photoacoustic computed tomography (PACT), and high-resolution photoacoustic microscopy (PAM) to assess the stereoscopic and comprehensive pathophysiological status of IS at an early stage. Two representative models of IS, referring to photothrombosis and middle cerebral artery occlusion (MCAO) models, were established to verify the feasibility of photoacoustic imaging detection. Results: Non-invasive, rapid PACT of the IS model in mouse provided structural information of the brain lesion, achieving early disease identification (5 min after the onset of disease). Moreover, it was able to dynamically reflect disease progression. Quantitative high-resolution PAM allowed observation of pathological changes in the microvascular system of mouse brain. In terms of functional imaging, significant differences in oxygen saturation (sO2) levels between infarcted and normal areas could be observed by PACT, permitting effective functional parameters for the diagnosis of IS. Conclusions: We used PACT to perform full-view structural imaging and functional imaging of sO2 in IS at the macroscopic level, and then observed the microvascular changes in the infarcted area at the microscopic level by using PAM. This work may provide new tools for the early diagnosis of IS and its subsequent complications as well as assessment of disease progression.


Subject(s)
Brain Ischemia/pathology , Ischemic Stroke/pathology , Microvessels/pathology , Optical Imaging/methods , Photoacoustic Techniques/methods , Animals , Brain Ischemia/diagnostic imaging , Disease Models, Animal , Early Diagnosis , Ischemic Stroke/diagnostic imaging , Male , Mice , Mice, Nude , Microvessels/diagnostic imaging , Oxygen/metabolism
14.
Radiol Imaging Cancer ; 2(3): e190030, 2020 05.
Article in English | MEDLINE | ID: mdl-33778711

ABSTRACT

Diagnosing cancer during early stages can substantially increase the cure rate, decrease the recurrence rate, and reduce health care costs. Over the past few decades, the continual development of new medical imaging modalities has been an important factor for diagnosing cancer, selecting therapies, and monitoring response to treatment. Photoacoustic tomography (PAT) is a hybrid imaging modality combining optical contrast from absorption of light with the outstanding spatiotemporal resolution of US imaging, providing biomedical morphologic and functional information of early-stage cancer. In this review, the basics and modalities of PAT, as well as a summary of its state-of-art applications in early-stage cancer (breast cancer, melanoma, and prostate cancer) detection and treatment guidance will be introduced. The potential clinical translation in cancer detection of PAT and prospects for the possibilities to lead to further clinical breakthroughs will also be discussed. Keywords: Molecular Imaging-Cancer, Photoacoustic Imaging © RSNA, 2020.


Subject(s)
Early Detection of Cancer/methods , Neoplasms/diagnostic imaging , Photoacoustic Techniques , Humans , Molecular Imaging , Spectrum Analysis , Tomography, X-Ray Computed
15.
Biomed Opt Express ; 10(7): 3425-3433, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31467787

ABSTRACT

Accurate diagnoses of superficial and deep dermal burns are difficult to make even by experienced investigators due to slight differences in dermis damage. Many imaging technologies have been developed to improve the burn depth assessment. But these imaging tools have limitations in deep imaging or resolving ability. Photoacoustic imaging is a hybrid modality combining optical and ultrasound imaging that remains high resolution in deep imaging depth. In this work, we used dual-scale photoacoustic imaging to noninvasively diagnose burn injury and monitor the burn healing. Real-time PACT provided cross-sectional and volumetric images of the burn region. High-resolution PAM allowed for imaging of angiogenesis on the hyperemic ring. A long-term surveillance was also performed to assess the difference between the two damage degrees of burn injuries. Our proposed method suggests an effective tool to diagnose and monitor burn injury.

16.
J Expo Sci Environ Epidemiol ; 27(4): 379-390, 2017 07.
Article in English | MEDLINE | ID: mdl-27189256

ABSTRACT

In this study, the characteristics of airborne particles generated during injection molding and grinding processes of carbon nanotube reinforced polycarbonate composites (CNT-PC) were investigated. Particle number concentration, size distribution, and morphology of particles emitted from the processes were determined using real-time particle sizers and transmission electron microscopy. The air samples near the operator's breathing zone were collected on filters and analyzed using scanning electron microscope for particle morphology and respirable fiber count. Processing and grinding during recycling of CNT-PC released airborne nanoparticles (NPs) with a geometric mean (GM) particle concentration from 4.7 × 103 to 1.7 × 106 particles/cm3. The ratios of the GM particle concentration measured during the injection molding process with exhaust ventilation relative to background were up to 1.3 (loading), 1.9 (melting), and 1.4 (molding), and 101.4 for grinding process without exhaust ventilation, suggesting substantial NP exposures during these processes. The estimated mass concentration was in the range of 1.6-95.2 µg/m3. Diverse particle morphologies, including NPs, NP agglomerates, particles with embedded or protruding CNTs and fibers, were observed. No free CNTs were found during any of the investigated processes. The breathing zone respirable fiber concentration during the grinding process ranged from non-detectable to 0.13 fiber/cm3. No evidence was found that the emissions were affected by the number of recycling cycles. Institution of exposure controls is recommended during these processes to limit exposures to airborne NPs and CNT-containing fibers.


Subject(s)
Air Pollutants, Occupational/analysis , Nanofibers/analysis , Nanoparticles/analysis , Nanotubes, Carbon/analysis , Occupational Exposure/analysis , Dust/analysis , Environmental Monitoring/methods , Humans , Inhalation Exposure/analysis , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Particle Size , Polycarboxylate Cement , Recycling , Regression Analysis
17.
Ann Occup Hyg ; 60(1): 40-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26447230

ABSTRACT

Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP.


Subject(s)
Nanofibers/analysis , Nanotubes, Carbon/analysis , Occupational Exposure/analysis , Polypropylenes/chemistry , Recycling/methods , Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Humans , Industry/standards , Inhalation Exposure/analysis , Nanoparticles , Occupational Exposure/standards , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...