Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Autophagy ; : 1-17, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38842055

ABSTRACT

ATG10S is a newly discovered subtype of the autophagy protein ATG10. It promotes complete macroautophagy/autophagy, degrades multiple viral proteins, and increases the expression of type III interferons. Here, we aimed to investigate the mechanism of ATG10S cooperation with IFNL1 to degrade viral proteins from different viruses. Using western blot, immunoprecipitation (IP), tandem sensor RFP-GFP-LC3B and in situ proximity ligation assays, we showed that exogenous recombinant ATG10S protein (rHsATG10S) could enter into cells through clathrin, and ATG10S combined with ATG7 with IFNL1 assistance to facilitate ATG12-ATG5 conjugation, thereby contributing to the autophagosome formation in multiple cell lines containing different virions or viral proteins. The results of DNA IP and luciferase assays also showed that ATG10S was able to directly bind to a core motif (CAAGGG) within a binding site of transcription factor ZNF460 on the IFNL1 promoter, by which IFNL1 transcription was activated. These results clarified that ATG10S promoted autophagosome formation with the assistance of IFNL1 to ensure autophagy flux and autophagic degradation of multiple viral proteins and that ATG10S could also act as a novel transcription factor to promote IFNL1 gene expression. Importantly, this study further explored the antiviral mechanism of ATG10S interaction with type III interferon and provided a theoretical basis for the development of ATG10S into a new broad-spectrum antiviral protein drug.Abbreviation: ATG: autophagy related; ATG10S: the shorter isoform of autophagy-related 10; CC50: half cytotoxicity concentration; CCV: clathrin-coated transport vesicle; CLTC: clathrin heavy chain; CM: core motif; co-IP: co-immunoprecipitation; CPZ: chlorpromazine; ER: endoplasmic reticulum; HCV: hepatitis C virus; HBV: hepatitis B virus; HsCoV-OC43: Human coronavirus OC43; IFN: interferon; PLA: proximity ligation assay; rHsATG10S: recombinant human ATG10S protein; RLU: relative light unit; SQSTM1: sequestosome 1; ZNF: zinc finger protein.

2.
J Appl Toxicol ; 44(8): 1198-1213, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38639436

ABSTRACT

Intracerebral hemorrhage (ICH), for which there are currently no effective preventive or treatment methods, has a very high fatality rate. Statins, such as atorvastatin (ATV), are the first-line drugs for regulating blood lipids and treating hyperlipidemia-related cardiovascular diseases. However, ATV-associated ICH has been reported, although its incidence is rare. In this study, we aimed to investigate the protective action and mechanisms of berberine (BBR) against ATV-induced brain hemorrhage. We established an ICH model in zebrafish induced by ATV (2 µM) and demonstrated the effects of BBR (10, 50, and 100 µM) on ICH via protecting the vascular network using hemocyte staining and three transgenic zebrafish. BBR was found to reduce brain inflammation and locomotion injury in ICH-zebrafish. Mechanism research showed that ATV increased the levels of VE-cadherin and occludin proteins but disturbed their localization at the cell membrane by abnormal phosphorylation, which decreased the number of intercellular junctions between vascular endothelial cells (VECs), disrupting the integrity of vascular walls. BBR reversed the effects of ATV by promoting autophagic degradation of phosphorylated VE-cadherin and occludin in ATV-induced VECs examined by co-immunoprecipitation (co-IP). These findings provide crucial insights into understanding the BBR mechanisms involved in the maintenance of vascular integrity and in mitigating adverse reactions to ATV.


Subject(s)
Atorvastatin , Berberine , Cerebral Hemorrhage , Zebrafish , Animals , Atorvastatin/pharmacology , Cerebral Hemorrhage/chemically induced , Berberine/pharmacology , Animals, Genetically Modified , Disease Models, Animal , Endothelial Cells/drug effects
3.
Toxicol Appl Pharmacol ; 469: 116529, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37100089

ABSTRACT

The most commonly reported side effect of azithromycin is gastrointestinal (GI) disorders, and the main acid degradation product is 3'-Decladinosyl azithromycin (impurity J). We aimed to compare the GI toxicity of azithromycin and impurity J on zebrafish larvae and investigate the mechanism causing the differential GI toxicity. Results of our study showed that the GI toxicity induced by impurity J was higher than that of azithromycin in zebrafish larvae, and the effects of impurity J on transcription in the digestive system of zebrafish larvae were significantly stronger than those of azithromycin. Additionally, impurity J exerts stronger cytotoxic effects on GES-1 cells than azithromycin. Simultaneously, impurity J significantly increased ghsrb levels in the zebrafish intestinal tract and ghsr levels in human GES-1 cells compared to azithromycin, and ghsr overexpression significantly reduced cell viability, indicating that GI toxicity induced by azithromycin and impurity J may be correlated with ghsr overexpression induced by the two compounds. Meanwhile, molecular docking analysis showed that the highest -CDOCKER interaction energy scores with the zebrafish GHSRb or human GHSR protein might reflect the effect of azithromycin and impurity J on the expression of zebrafish ghsrb or human ghsr. Thus, our results suggest that impurity J has higher GI toxicity than azithromycin due to its greater ability to elevate ghsrb expression in zebrafish intestinal tract.


Subject(s)
Azithromycin , Zebrafish , Animals , Humans , Azithromycin/toxicity , Larva , Molecular Docking Simulation , Intestines
4.
Phytomedicine ; 101: 154130, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526324

ABSTRACT

BACKGROUND: Doxorubicin (DOX)-induced cardiotoxicity is related to abnormal autophagy and apoptosis in the heart. Berberine (BBR) is a well-known natural compound with potential cardioprotective and autophagic modulatory properties. HYPOTHESIS: We hypothesized that BBR ameliorates DOX-induced cardiotoxicity by balancing cardiomyocyte autophagy and apoptosis. STUDY DESIGN/METHODS: DOX was used to generate in vivo and in vitro cardiotoxic models. Larval and adult zebrafish and human AC16 cells were used to study (i) the effects of BBR on autophagy and apoptosis upon DOX challenge and (ii) the underlying mechanisms. RESULTS: BBR protected AC16 cells and zebrafish hearts from DOX-induced cytotoxicity and apoptosis. Bcl-xL knockdown in AC16 cells and zebrafish demonstrated that Bcl-xL is required for BBR's anti-apoptotic activity. DOX treatment promoted Beclin1 binding to Bcl-xL, disrupted mitophagy, and increased ROS accumulation in AC16 cells. In AC16 cells and zebrafish hearts, pretreatment with BBR enhanced mitophagy via dissociation of the Bcl-xL-Beclin1 complex and decreased ROS accumulation. Inhibition of autophagy attenuated this effect of BBR. Intriguingly, BBR increased Bcl-xL binding to Bnip3, sequestration, and mitophagy, indicating that Bcl-xL may play a beneficial role in BBR-induced mitophagy. Additionally, BBR significantly ameliorated DOX-induced cardiac dysfunction in zebrafish, whereas Bcl-xL knockdown abolished this effect. Notably, we discovered that BBR exerts biphasic dose-response effects in response to DOX; the cardioprotective properties were observed upon treatment with low-dose BBR (≤ 1 µM in cells, ≤ 10 µM in zebrafish), but not with relatively high-dose BBR. CONCLUSION: These findings indicate that the protective effects of low-dose BBR against DOX-induced cardiotoxicity are mediated by Bcl-xL.


Subject(s)
Berberine , Cardiotoxicity , Animals , Apoptosis , Beclin-1/metabolism , Berberine/pharmacology , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Mitophagy , Myocytes, Cardiac , Reactive Oxygen Species/metabolism , Zebrafish/metabolism
5.
Front Pharmacol ; 13: 860702, 2022.
Article in English | MEDLINE | ID: mdl-35444552

ABSTRACT

Impurities in pharmaceuticals of potentially hazardous materials may cause drug safety problems. Macrolide antibiotic preparations include active pharmaceutical ingredients (APIs) and different types of impurities with similar structures, and the amount of these impurities is usually very low and difficult to be separated for toxicity evaluation. Our previous study indicated that hepatotoxicity induced by macrolides was correlated with c-fos overexpression. Here, we report an assessment of macrolide-related liver toxicity by ADMET prediction, molecular docking, structure-toxicity relationship, and experimental verification via detection of the c-fos gene expression in liver cells. The results showed that a rapid assessment model for the prediction of hepatotoxicity of macrolide antibiotics could be established by calculation of the -CDOCKER interaction energy score with the FosB/JunD bZIP domain and then confirmed by the detection of the c-fos gene expression in L02 cells. Telithromycin, a positive compound of liver toxicity, was used to verify the correctness of the model through comparative analysis of liver toxicity in zebrafish and cytotoxicity in L02 cells exposed to telithromycin and azithromycin. The prediction interval (48.1∼53.1) for quantitative hepatotoxicity in the model was calculated from the docking scores of seven macrolide antibiotics commonly used in clinics. We performed the prediction interval to virtual screening of azithromycin impurities with high hepatotoxicity and then experimentally confirmed by liver toxicity in zebrafish and c-fos gene expression. Simultaneously, we found the hepatotoxicity of azithromycin impurities may be related to the charge of nitrogen (N) atoms on the side chain group at the C5 position via structure-toxicity relationship of azithromycin impurities with different structures. This study provides a theoretical basis for improvement of the quality of macrolide antibiotics.

6.
Toxicology ; 441: 152501, 2020 08.
Article in English | MEDLINE | ID: mdl-32454074

ABSTRACT

Macrolide antibiotics (macrolides) are among the most commonly prescribed antibiotics worldwide and are used for a wide range of infections, but macrolides also expose people to the risk of adverse events include hepatotoxicity. Here, we report the liver toxicity of macrolides with different structures in zebrafish. The absorption, distribution, metabolism, excretion and toxicology (ADMET) parameters of macrolide compounds were predicted and contrasted by utilizing in silico analysis. Fluorescence imaging and Oil Red O stain assays showed all the tested macrolide drugs induced liver degeneration, changed liver size and liver steatosis in larval zebrafish. Through RNA-seq analysis, we found seven co-regulated differentially expressed genes (co-DEGs) associated with metabolism, apoptosis and immune system biological processes, and two co-regulated significant pathways including amino sugar and nucleotide sugar metabolism and apoptosis signaling pathway. We found that only fosab of seven co-DEGs was in the two co-regulated significant pathways. fosab encoded proto-oncogene c-Fos, which was closely associated with liver diseases. The whole-mount in situ hybridization showed high transcription of c-Fos induced by macrolide compounds mainly in the liver region of zebrafish larvae. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) leakage assays revealed that macrolides exerts significant cytotoxic effects on L02 cells. qRT-PCR and western blot analysis demonstrated macrolides also promoted human c-Fos expression in L02 cells. The c-Fos overexpression significantly reduced cell viability by using CCK-8 assay. These data indicate that hepatotoxicity induced by macrolides may be correlated with c-Fos expression activated by these compounds. This study may provide a biomarker for the further investigations on the mechanism of hepatotoxicity induced by macrolide drugs with different structures, and extend our understanding for improving rational clinical application of macrolides.


Subject(s)
Anti-Bacterial Agents/toxicity , Chemical and Drug Induced Liver Injury/etiology , Macrolides/toxicity , Animals , Blotting, Western , Chemical and Drug Induced Liver Injury/diagnostic imaging , Chemical and Drug Induced Liver Injury/pathology , Computer Simulation , Fatty Liver/chemically induced , Gene Expression/drug effects , Larva , Liver/diagnostic imaging , Liver/drug effects , Liver/metabolism , Liver/pathology , Luminescent Proteins/metabolism , Optical Imaging , Proto-Oncogene Mas , Real-Time Polymerase Chain Reaction , Structure-Activity Relationship , Zebrafish , Red Fluorescent Protein
7.
Cell Death Dis ; 11(3): 200, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32205851

ABSTRACT

Interferon lambda-2 (IL28A) has a wide antiviral effect with fewer side-effects. Autophagy is a host mechanism to maintain intracellular homeostasis and defends invasion of pathogenic microorganisms. HCV NS5A can disable host defense systems to support HCV replication. Thus, molecular mechanism of interaction among interferon lambda, autophagy, and HCV was concerned and explored in this study. We report that HCV NS5A activated an incomplete autophagy by promoting the autophagic ubiquitylation-like enzymes ATG3, ATG5, ATG7, ATG10, and autophagosome maker LC3B, but blocked autophagy flux; IL28A bound to NS5A at NS5A-ISDR region, and degraded HCV-NS5A by promoting autolysosome formations in HepG2 cells. A software prediction of IL28A protein conformation indicated a potential structure of IL28A homotetramer; the first α-helix of IL28A locates in the interfaces among the four IL28A chains to maintain IL28A homotetrameric conformation. Co-IP and cell immunofluorescence experiments with sequential deletion mutants demonstrate that IL28A preferred a homotetramer conformation to a monomer in the cells; the IL28A homotetramer is positively correlated with autolysosomal degradation of HCV NS5A and the other HCV proteins. Summarily, the first α-helix of IL28A protein is the key domain for maintaining IL28A homotetramer which is required for promoting formation of autolysosomes and degradation of HCV proteins in vitro.


Subject(s)
Hepacivirus/metabolism , Interleukins/metabolism , Lysosomes/metabolism , Viral Nonstructural Proteins/metabolism , Hep G2 Cells , Hepatitis C, Chronic/metabolism , Hepatitis C, Chronic/virology , Humans , Interleukins/chemistry , Interleukins/genetics , Models, Molecular , Transfection , Viral Nonstructural Proteins/genetics
8.
Autophagy ; 16(12): 2167-2179, 2020 12.
Article in English | MEDLINE | ID: mdl-31996071

ABSTRACT

IFNL2 is a potent antiviral interferon, but the regulation of its gene expression is not fully clear. Here, we report the regulation of ATG10S for IFNL2 transcription. Through sequential deletion of the IFNL2 promoter sequence, we found LP1-1, a fragment of the promoter responding to ATG10S activity. Subcellular localization and DNA immunoprecipitation assays showed ATG10S translocating into the nucleus and binding to LP1-1. Online prediction for transcription factor binding sites showed an IRF1 targeting locus in LP1-1. Luciferase assays, RT-PCR, and western blot analysis revealed a core motif (CAAGAC) existing in LP1-1, which determined ATG10S and IRF1 activity; individual nucleotide substitution showed that the functional nucleotides of ATG10S targeting were C1, A3, and C6, and the ones associated with IRF1 were A3 and G4 within the core motif. Co-immunoprecipitation assays revealed ATG10S combination with KPNA1/importin α, KPNB1/importin ß, and IRF1. The knockdown of endogenous IRF1 increased ATG10S activity on IFNL2 transcription. These results indicate that ATG10S as a transcription factor competes with IRF1 for the same binding site to promote IFNL2 gene transcription. Abbreviations: ATG10: autophagy related 10; ATG10S: the shorter isoform of autophagy related 10; BD: binding domain; CM: core motif; co-IP: co-immunoprecipitation; GFP: green fluorescent protein; HCV: hepatitis C virus; IF: immunofluorescence; IFN: interferon; IRF: interferon regulatory factor; LP: lambda promoter; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; RLU: relative light unit; SQSTM1: sequestosome 1.


Subject(s)
Autophagy-Related Proteins/metabolism , Interferon Regulatory Factor-1/metabolism , Interleukins/genetics , Transcription Factors/metabolism , Transcription, Genetic , Vesicular Transport Proteins/metabolism , Amino Acid Motifs , Base Sequence , Binding Sites , Cell Nucleus/metabolism , Green Fluorescent Proteins/metabolism , Hep G2 Cells , Humans , Interferon Regulatory Factor-1/chemistry , Interleukins/metabolism , Models, Biological , Promoter Regions, Genetic , Protein Binding , Protein Domains , Protein Isoforms/metabolism , Protein Transport , Transcriptional Activation/genetics
9.
J Pharmacol Toxicol Methods ; 101: 106662, 2020.
Article in English | MEDLINE | ID: mdl-31837439

ABSTRACT

The quantification and visualization of fluorescent staining at the whole organ level remain a challenge. Deconvolution image systems allow multi-dimensional imaging and stereo-measurement via rapid 3D reconstruction. To demonstrate this technique, we investigated doxorubicin-induced cardiotoxicity in zebrafish. Fluorogenic probe and immunofluorescence were employed to identify cardiac reactive oxygen species generation and myocardial apoptosis, respectively. We revealed the spatial distribution of fluorescent staining across the whole heart by this approach. In addition, the fluorescence intensities and fluorescence-dyed volumes in the zebrafish heart were quantified automatically. Importantly, doxorubicin treatment induced more ROS generation in the ventricle as compared to the atrium, while the levels of activated caspase-3 were much higher in the atrioventricular junction. These results would have been difficult to observe using traditional 2D images. Therefore, our deconvolution imaging strategy allows the 3D quantification and visualization of fluorescent staining at the whole organ level, and will thus support in vivo studies.


Subject(s)
Heart Injuries/diagnostic imaging , Heart Injuries/physiopathology , Imaging, Three-Dimensional/methods , Animals , Cardiotoxicity , Caspase 3/metabolism , Doxorubicin/toxicity , Fluorescence , Heart Function Tests/drug effects , Heart Injuries/chemically induced , Quantitative Structure-Activity Relationship , Reactive Oxygen Species/metabolism , Spatial Analysis , Zebrafish
10.
Front Pharmacol ; 10: 1504, 2019.
Article in English | MEDLINE | ID: mdl-31969822

ABSTRACT

Background: The prevalence of non-alcohol fatty liver disease (NAFLD) is increasing in children and adolescents who are mostly resulted from overfeeding. Previous studies demonstrate that berberine (BBR), a compound derived from plant, has beneficial effects on NAFLD in adults but poorly understood in the pediatric population. This study employed a larval zebrafish model to mimic the therapeutic effects of BBR in the pediatric population and the mechanisms underlying its hepatoprotection. Methods: High-cholesterol diet (HCD)-fed zebrafish exposed to BBR at doses of 0, 1, 5, and 25 µM. After the larvae were treated with BBR for 10 days, its effect on hepatic steatosis was evaluated. We introduced Raman imaging and three-dimensional (3D) molecular imaging to detect changes in the biochemical composition and reactive oxygen species (ROS) levels of zebrafish liver. Gene expression microarray was performed to identify differentially expressed genes (DEGs) followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and functional category analysis. Results: BBR (5 and 25 µM) administration prevented HCD-induced liver lipid accumulation in larval zebrafish. The result was further confirmed by the pathological observation. Raman mapping indicated that the biochemical composition in the liver of BBR-treated group shifted to the control. The quantitative analysis of 3D imaging showed that the ROS level was significantly decreased in the liver of BBR-treated larvae. In the livers of the BBR group, we found 468 DEGs, including 172 genes with upregulated expression and 296 genes with downregulated expression. Besides, GO enrichment, KEGG pathway, and functional category analysis showed that various processes related to glucolipid metabolism, immune response, DNA damage and repair, and iron were significantly enriched with DEGs. The expression levels of the crucial genes from the functional analysis were also confirmed by quantitative PCR (qPCR). Conclusion: BBR can significantly improve hepatic steatosis in HCD-fed zebrafish larvae. Its mechanisms might be associated with the regulation of lipid metabolism, oxidative stress, and iron homeostasis. Raman imaging in larval zebrafish might become a useful tool for drug evaluation. Mainly, the gene expression profiles provide molecular information for BBR on the prevention and treatment of pediatric NAFLD.

11.
Front Mol Neurosci ; 11: 378, 2018.
Article in English | MEDLINE | ID: mdl-30534049

ABSTRACT

Epilepsy is a neuronal dysfunction syndrome characterized by transient and diffusely abnormal discharges of neurons in the brain. Previous studies have shown that mutations in the syntaxin 1b (stx1b) gene cause a familial, fever-associated epilepsy syndrome. It is unclear as to whether the stx1b gene also correlates with other stimulations such as flashing and/or mediates the effects of antiepileptic drugs. In this study, we found that the expression of stx1b was present mainly in the brain and was negatively correlated with seizures in a pentylenetetrazole (PTZ)-induced seizure zebrafish model. The transcription of stx1b was inhibited by PTZ but rescued by valproate, a broad-spectrum epilepsy treatment drug. In the PTZ-seizure zebrafish model, stx1b knockdown aggravated larvae hyperexcitatory swimming and prompted abnormal trajectory movements, particularly under lighting stimulation; at the same time, the expression levels of the neuronal activity marker gene c-fos increased significantly in the brain. In contrast, stx1b overexpression attenuated seizures and decreased c-fos expression levels following PTZ-induced seizures in larvae. Thus, we speculated that a deficiency of stx1b gene expression may be related with the onset occurrence of clinical seizures, particularly photosensitive seizures. In addition, we found that berberine (BBR) reduced larvae hyperexcitatory locomotion and abnormal movement trajectory in a concentration-dependent manner, slowed down excessive photosensitive seizure-like swimming, and assisted in the recovery of the expression levels of STX1B. Under the downregulation of STX1B, BBR's roles were limited: specifically, it only slightly regulated the levels of the two genes stx1b and c-fos and the hyperexcitatory motion of zebrafish in dark conditions and had no effect on the overexcited swimming behavior seen in conjunction with lighting stimulation. These findings further demonstrate that STX1B protein levels are negatively correlated with a seizure and can decrease the sensitivity of the photosensitive response in a PTZ-induced seizure zebrafish larvae; furthermore, STX1B may partially mediate the anticonvulsant effect of BBR. Additional investigation regarding the relationship between STX1B, BBR, and seizures could provide new cues for the development of novel anticonvulsant drugs.

12.
Front Immunol ; 9: 2176, 2018.
Article in English | MEDLINE | ID: mdl-30319633

ABSTRACT

Autophagy-related 10 (ATG10) is essential for autophagy since it promotes ATG5-ATG12 complex formation. Our previous study found that there are two isoforms of the ATG10 protein, ATG10 (a longer one) and ATG10S, which have identical sequences except an absence of a 36-amino acid fragment (peptide B) in ATG10S, yet exhibit distinct effects on HCV genome replication. Here, we report the existence of two amino acids, cysteine at residue 44 and 135 (Cys44 and Cys135, respectively), in ATG10 being related to differential effects of ATG10 on HCV replication and autophagy flux. Through a series of ATG10 mutation experiments and protein modeling prediction, we found that Cys44 was involved in the dual role of the two isoforms of ATG10 protein on HCV replication and autophagy flux, and that Cys135 plays similar roles as Cys44, but the disulfide bond of Cys44-Cys135 was not verified in the ATG10 protein. Further analyses by full HCV virion infection confirmed the roles of -SH of Cys44 and Cys135 on HCV replication. ATG10 with deleted or mutated Cys44 and/or Cys135 could activate expression of innate immunity-related genes, including il28a, irf-3, irf-7, and promote complete autophagy by driving autophagosomes to interact with lysosomes via IL28A-mediation. Subcellular localization assay and chromatin immunoprecipitation assay showed that ATG10 with the sulfydryl deletion or substitution of Cys44 and Cys135 could translocate into the nucleus and bind to promoter of IL28A gene; the results indicated that ATG10 with Cys44 and/or Cys135 absence might act as transcriptional factors to trigger the expression of anti-HCV immunological genes, too. In conclusion, our findings provide important information for understanding the differential roles on HCV replication and autophagy flux between ATG10 and ATG10S, and how the structure-function relationship of ATG10 transformed by a single -SH group loss on Cys44 and Cys135 in ATG10 protein, which may be a new target against HCV replication.


Subject(s)
Autophagy-Related Proteins/immunology , Autophagy/immunology , Hepacivirus/physiology , Vesicular Transport Proteins/immunology , Virus Replication/immunology , Amino Acid Substitution , Autophagy/genetics , Autophagy-Related Proteins/genetics , Cysteine/genetics , Cysteine/immunology , Hep G2 Cells , Humans , Mutation, Missense , Vesicular Transport Proteins/genetics , Virus Replication/genetics
13.
Article in English | MEDLINE | ID: mdl-30026731

ABSTRACT

Dietary composition has important impact on nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to explore the relationship between NAFLD and major dietary components using zebrafish larvae fed different diets. Zebrafish larvae fed with high cholesterol (HC), high fructose (HF) and extra feeding (EF) diets for 10 days displayed varying degrees steatosis. The incidence and degree of steatosis were the most severe in the EF group. A HC diet severely promoted lipid deposits in the caudal vein. The triglyceride and glucose contents of zebrafish significantly increased in the HF and EF groups compared with the control group. Moreover, the mRNA expression of oxidative stress gene gpx1a, endoplasmic reticulum stress genes ddit3 and grp78, inflammatory genes tnfa, glucose metabolism genes irs2, glut1 and glut2, and lipid metabolism genes cidec, chrebp, ppara and cpt1a were significantly increased in the HF group. The HC diet was associated with upregulation of grp78, and downregulation of irs2, glut1 and glut2. The mRNA expression of lipogenesis and glucose metabolism associated genes were decreased in the EF group. In addition, the autophagy associated genes atg3, atg5, atg7, and atg12, and protein expression of ATG3 and LC3BII were reduced and P62 were elevated in the HC group. We also performed comparative transcriptome analysis of the four groups. A total of 2,492 differentially expressed genes were identified, and 24 statistically significant pathways were enriched in the diet treatment groups. This study extends our understanding of the relationships between diet ingredients and host factors that contribute to the pathogenesis of NAFLD, which may provide new ideas for the treatment of NAFLD.

14.
Article in English | MEDLINE | ID: mdl-29670865

ABSTRACT

Autophagy is a host mechanism for cellular homeostatic control. Intracellular stresses are symptoms of, and responses to, dysregulation of the physiological environment of the cell. Alternative gene transcription splicing is a mechanism potentially used by a host to respond to physiological or pathological challenges. Here, we aimed to confirm opposite effects of two isoforms of the human autophagy-related protein ATG10 on an HCV subgenomic replicon in zebrafish. A liver-specific HCV subreplicon model was established and exhibited several changes in gene expression typically induced by HCV infection, including overexpression of several HCV-dependent genes (argsyn, leugpcr, rasgbd, and scaf-2), as well as overexpression of several ER stress related genes (atf4, chop, atf6, and bip). Autophagy flux was blocked in the HCV model. Our results indicated that the replication of the HCV subreplicon was suppressed via a decrease in autophagosome formation caused by the autophagy inhibitor 3MA, but enhanced via dysfunction in the lysosomal degradation caused by another autophagy inhibitor CQ. Human ATG10, a canonical isoform in autophagy, facilitated the amplification of the HCV-subgenomic replicon via promoting autophagosome formation. ATG10S, a non-canonical short isoform of the ATG10 protein, promoted autophagy flux, leading to lysosomal degradation of the HCV-subgenomic replicon. Human ATG10S may therefore inhibit HCV replication, and may be an appropriate target for future antiviral drug screening.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy/genetics , Genome, Viral/genetics , Hepacivirus/genetics , Vesicular Transport Proteins/metabolism , Virus Replication/genetics , Animals , Autophagy-Related Proteins/genetics , Hepacivirus/physiology , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Vesicular Transport Proteins/genetics , Zebrafish
15.
Eur J Med Chem ; 143: 1053-1065, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29232582

ABSTRACT

Aloperine (1), a Chinese natural product with a unique endocyclic scaffold, was first identified to be a potent hepatitis C virus (HCV) inhibitor in our laboratory. Thirty-four new aloperine derivatives were designed, synthesized and evaluated for their anti-HCV activities taking 1 as the lead. Among them, compound 7f exhibited the potential potency with EC50 values in a micromolar range against both wild-type and direct-acting antiviral agents (DAAs)-resistant variants, and synergistically inhibited HCV replication with approved DAAs. Furthermore, it also owned a good oral pharmacokinetic and safety profile, suggesting a highly druglike nature. The primary mechanism showed that 7f might target host components, distinctly different from the DAAs currently used in clinic. Therefore, we consider aloperine derivatives to be a novel class of anti-HCV agents, and compound 7f has been selected as a promising antiviral candidate for further investigation.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , Hepacivirus/drug effects , Piperidines/pharmacology , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Mice, Inbred Strains , Microbial Sensitivity Tests , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Quinolizidines , Structure-Activity Relationship , Time Factors , Virus Replication/drug effects
16.
J Biol Chem ; 292(44): 18062-18074, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28928221

ABSTRACT

Parkinson's disease (PD) is one of the most epidemic neurodegenerative diseases and is characterized by movement disorders arising from loss of midbrain dopaminergic (DA) neurons. Recently, the relationship between PD and autophagy has received considerable attention, but information about the mechanisms involved is lacking. Here, we report that autophagy-related gene 5 (ATG5) is potentially important in protecting dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model in zebrafish. Using analyses of zebrafish swimming behavior, in situ hybridization, immunofluorescence, and expressions of genes and proteins related to PD and autophagy, we found that the ATG5 expression level was decreased and autophagy flux was blocked in this model. The ATG5 down-regulation led to the upgrade of PD-associated proteins, such as ß-synuclein, Parkin, and PINK1, aggravation of MPTP-induced PD-mimicking pathological locomotor behavior, DA neuron loss labeled by tyrosine hydroxylase (TH) or dopamine transporter (DAT), and blocked autophagy flux in the zebrafish model. ATG5 overexpression alleviated or reversed these PD pathological features, rescued DA neuron cells as indicated by elevated TH/DAT levels, and restored autophagy flux. The role of ATG5 in protecting DA neurons was confirmed by expression of the human atg5 gene in the zebrafish model. Our findings reveal that ATG5 has a role in neuroprotection, and up-regulation of ATG5 may serve as a goal in the development of drugs for PD prevention and management.


Subject(s)
Autophagy-Related Protein 5/metabolism , Disease Models, Animal , Dopaminergic Neurons/metabolism , Gene Expression Regulation , Genetic Therapy , Parkinsonian Disorders/prevention & control , Zebrafish Proteins/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Autophagy/drug effects , Autophagy-Related Protein 5/antagonists & inhibitors , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/therapeutic use , Behavior, Animal/drug effects , Biomarkers/metabolism , Brain/cytology , Brain/metabolism , Brain/pathology , Cell Line, Tumor , DNA, Recombinant/therapeutic use , Dopaminergic Neurons/cytology , Dopaminergic Neurons/pathology , Embryo, Nonmammalian , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Larva , Microinjections , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/therapeutic use , Neuroprotection/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics
17.
Int J Biol Sci ; 13(8): 985-995, 2017.
Article in English | MEDLINE | ID: mdl-28924380

ABSTRACT

Type 2 diabetes mellitus is characterized by insulin resistance. However, the complete molecular mechanism remains unclear. In this study, zebrafish were fed a long-term high-fat diet to induce type 2 diabetes, which resulted in a higher body weight, body mass index, more lipid vacuoles in liver, increased insulin transcription level in liver, brain and muscle, and high fasting blood glucose in the high-fat diet zebrafish. Oppositely, the transcription levels of insulin substrate-2 and glucose transporter 2 were significantly decreased, indicating insulin signaling pathway and glucose transport impaired in the insulin-targeting tissues. Transcription of the autophagy-related genes, ATG3, ATG4B, ATG5, ATG7, ATG12, and FOXO3, were decreased but autophagy inhibitor gene m-TOR increased, and autophagy-flux was inhibited in liver of the high-fat diet zebrafish. Main of these changes were confirmed in palmitic acid-treated HepG2 cells. Further, in co-immunoprecipitation and subcellular co-localization experiments, the conjunction of preproinsulin with cargo-recognition protein p62 increased, but conjuncts of autophagosome with p62-cargo, lysosomes with p62-cargo, and autolysosomes decreased apparently. Interestingly, lysosomes, autolysosomes and conjuncts of p62-insulin localized at the periphery of palmitic acid-treated cells, the margination of lysosomes may mediate deactivation of proteases activity. These findings suggest that intracellular high-lipid may trigger defective autophagy, defective downstream signaling of insulin and accumulated intracellular preproinsulin, leading to dysregulation of cell homeostasis mechanism, which may be one of reasons involved in insulin-resistance in type 2 diabetes.


Subject(s)
Autophagy/physiology , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Animals , Autophagy-Related Proteins/metabolism , Blotting, Western , Glucose Transporter Type 2/metabolism , Hep G2 Cells , Humans , Immunoprecipitation , Protein Precursors/metabolism , Real-Time Polymerase Chain Reaction , Zebrafish
18.
Sci Rep ; 7(1): 11250, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900156

ABSTRACT

Autophagy and immune response are two defense systems that human-body uses against viral infection. Previous studies documented that some viral mechanisms circumvented host immunity mechanisms and hijacked autophagy for its replication and survival. Here, we focus on interactions between autophagy mechanism and innate-immune-response in HCV-subgenomic replicon cells to find a mechanism linking the two pathways. We report distinct effects of two autophagy-related protein ATG10s on HCV-subgenomic replication. ATG10, a canonical long isoform in autophagy process, can facilitate HCV-subgenomic replicon amplification by promoting autophagosome formation and by combining with and detaining autophagosomes in cellular periphery, causing impaired autophagy flux. ATG10S, a non-canonical short isoform of ATG10 proteins, can activate expression of IL28A/B and immunity genes related to viral ds-RNA including ddx-58, tlr-3, tlr-7, irf-3 and irf-7, and promote autophagolysosome formation by directly combining and driving autophagosomes to perinuclear region where lysosomes gather, leading to lysosomal degradation of HCV-subgenomic replicon in HepG2 cells. ATG10S also can suppress infectious HCV virion replication in Huh7.5 cells. Another finding is that IL28A protein directly conjugates ATG10S and helps autophagosome docking to lysosomes. ATG10S might be a new host factor against HCV replication, and as a target for screening chemicals with new anti-virus mechanisms.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy , Hepacivirus/immunology , Host-Pathogen Interactions , Immunity, Innate , Protein Isoforms/metabolism , Vesicular Transport Proteins/metabolism , Virus Replication , Cell Line , Hepacivirus/physiology , Hepatocytes/immunology , Hepatocytes/virology , Humans
19.
Front Pharmacol ; 8: 403, 2017.
Article in English | MEDLINE | ID: mdl-28694779

ABSTRACT

Cefazolin sodium is an essential drug that is widely used in clinical therapy for certain infective diseases caused by bacteria. As drug impurities are considered to be one of the most important causes of drug safety issues, we studied embryotoxicity, cardiotoxicity, and neurotoxicity of nine cefazolin sodium impurities in zebrafish embryo and larvae for the objective control of impurity profiling. LC-MS/MS was employed to analyze the compound absorbance in vivo, and the structure-toxicity relationship was approached. Our results suggested that the structure of MMTD (2-mercapto-5-methyl-1, 3, 4-thiadiazole) is the main toxic functional group for embryo deformities; the 7-ACA (7-aminocephalosporanic acid) structure mainly affects motor nerve function; and both the MMTD and 7-ACA structures are responsible for cardiac effects. Impurity G (7-ACA) presented with the strongest toxicity; impurity A was most extensively absorbed to embryo and larvae; and impurity F (MMTD) exhibited the strongest apparent toxic effect; Therefore, impurities F and G should be monitored from the cefazolin sodium preparations.

20.
Yao Xue Xue Bao ; 51(4): 580-7, 2016 04.
Article in Chinese | MEDLINE | ID: mdl-29859527

ABSTRACT

Epilepsy is a kind of neurogenic diseases with high prevalence and characterized by seizure, brain paradoxical discharge and convulsion in spontaneous, transient, recurrent and uncontrolled manner. Development of new anti-epilepsy drugs requires a new reliable and high-performance animal models in screening of leading compounds. In this study, an epilepsy model in larval zebrafish was established using pentylenetetrazole (PTZ) compound. The results show that PTZ induced epilepsy-like seizure behavior such as irregular circular swimming, exciting locomotion, high swim velocity and convulsion in zebrafish. Expression patterns of two epilepsy-related gene c-fos and lgi1 were analyzed using RT-PCR and in situ hybridization; c-fos was enhanced and extended and lgi1 expression was reduced in PTZ concentration-dependent in the larval brain. When the model larvae exposed to anticonvulsant valproate(VPA), the epilepsy-like symptom decreased or disappeared, the marker genes c-fos and lgi1, as well as NeuN protein recovered to the normal levels. These responses to PTZ and to antiepileptic drug VPA are consistent with the observations in clinical studies and mouse models. Using this model, we evaluated anti-epilepsy activity of compounds Y53 and BMT, two homolog of berberine. The results show that the model larvae seizure triggered by lighting was partly remedied by Y53; and the larval exciting locomotion under the condition of no stimulation was suppressed by BMT. The findings indicate that the zebrafish larval epilepsy model is able to distinguish compounds with different activities in eleptiform seizure. We conclude that the zebrafish epilepsy model may be as a reliable and useful platform in screening of new anti-epilepsy candidates, which is suitable for basic research in epilepsy pathogenesis.


Subject(s)
Disease Models, Animal , Epilepsy/physiopathology , Seizures/physiopathology , Zebrafish , Animals , Anticonvulsants , Brain/metabolism , Epilepsy/chemically induced , Larva , Nerve Tissue Proteins/metabolism , Pentylenetetrazole , Proto-Oncogene Proteins c-fos/metabolism , Seizures/chemically induced , Swimming , Valproic Acid , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...