Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Acoust Soc Am ; 155(4): 2492-2502, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38587431

ABSTRACT

The swim bladder in some teleost fish functions to transfer the sound energy of acoustic stimuli to the inner ears. This study uses the auditory evoked potential tests, micro-computed tomography scanning, reconstruction, and numerical modeling to assess the contribution of the swim bladder to hearing in crucian carp (Carassius carassius). The auditory evoked potential results show that, at the tested frequency range, the audiogram of fish with an intact swim bladder linearly increases, ranging from 100 to 600 Hz. Over this frequency, the sound pressure thresholds have a local lowest value at 800 Hz. The mean auditory threshold of fish with an intact swim bladder is lower than that of fish with a deflated swim bladder by 0.8-20.7 dB. Furthermore, numerical simulations show that the received pressure of the intact swim bladders occurs at a mean peak frequency of 826 ± 13.6 Hz, and no peak response is found in the deflated swim bladders. The increased sensitivity of reception in sound pressure and acceleration are 34.4 dB re 1 µPa and 40.3 dB re 1 m·s-2 at the natural frequency of swim bladder, respectively. Both electrophysiological measurement and numerical simulation results show that the swim bladder can potentially extend hearing bandwidth and further enhance auditory sensitivity in C. carassius.


Subject(s)
Carps , Animals , Urinary Bladder , X-Ray Microtomography , Hearing , Hearing Tests
2.
Article in English | MEDLINE | ID: mdl-37642922

ABSTRACT

Chaetomium globosum can inhibit the growth of fusarium by means of their extracellular proteins. Two novel ß-glucanases, designated Cgglu17A and Cgglu16B, were separated from the supernatant of C. globosum W7 and verified to have the ability to hydrolyze cell walls of Fusarium sporotrichioides MLS-19. Cgglu17A (397 amino acids) was classified as glycoside hydrolase family 17 while Cgglu16B belongs to the family16 (284 amino acids). Recombinant protein Cgglu17A was successfully expressed in Escherichia coli, and the enzymes were purified by affinity chromatography. Maximum activity of Cgglu17A appeared at the pH 5.5 and temperature 50 °C, but Cgglu16B shows the maximum activity at the pH 5.0 and temperature 50 °C. Most of heavy metal ions had inhibition effect on the two enzymes, but Cgglu17A and Cgglu16B were respectively activated by Ba2+ and Mn2+. Cgglu17A exhibited high substrate specificity, almost only catalyzing the cleavage of ß-1,3-glycosidic bond, in various polysaccharose, to liberate glucose. However, Cgglu16B showed high catalytic activities to both ß-1,3-glycosidic and ß-1,3-1,4-glycosidic bonds. Cgglu17A was an exo-glucanase, but Cgglu16B was an endo-glucanase based on hydrolytic properties assay. Both of two enzymes showed potential antifungal activity, and the synergistic effect was observed in the germination experiment of pathogenic fungus. In conclusion, Cgglu17A (exo-1,3-ß-glucanase) and Cgglu16B (endo-1,3(4)-ß-glucanase) were confirmed to play a key role in the process of C. globosum controlling fusarium and have potential application value on industry and agriculture for the first time.

3.
Theriogenology ; 209: 243-250, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37480702

ABSTRACT

The survival, motility and capacitation of sperm in the female reproductive tract are important prerequisites for fertilization. The uterus is the main location for sperm capacitation. One of the most important physiological functions of the endometrial epithelium is to create a suitable uterine environment under the regulation of ovarian hormones, to ensure sperm capacitation. The composition of uterine fluid directly affects sperm capacitation. Fructose is an important component of semen that supports sperm viability and motility. Aldose reductase, a rate-limiting enzyme in the polyol pathway, metabolizes sorbitol and fructose, thereby supplying cells with necessary energy for functional activities. Existing studies have reported the presence aldose reductase in the endometrium, leading us to hypothesize that its expression in endometrial epithelium might promote sperm capacitation by maintaining the uterine environment. Yet, the mechanism of regulation has not been clarified. In this study, we investigated the expression of aldose reductase in mouse endometrial epithelium and its potential role in sperm capacitation. We initially investigated the periodic characteristics of glucose, fructose and sorbitol in uterine fluid. We then studied the temporal and spatial characteristics of aldose reductase in the endometrial epithelium. Next, we examined the effect of aldose reductase on glucose, fructose and sorbitol in uterine fluid. Finally, we explored the effect of aldose reductase on sperm capacitation and fertilization. The results showed that glucose and fructose content in uterine fluid and the expression of aldose reductase fluctuated periodically during physiological periods. Inhibition of aldose reductase in the endometrial epithelium interfered with sperm capacitation and fertilization by reducing the fructose levels in the uterine fluid. To conclude, the aldose reductase-mediated polyol pathway in endometrial epithelial cells is essential to maintain an appropriate fructose environment in the uterine fluid for sperm capacitation and fertilization.


Subject(s)
Uterine Diseases , Female , Male , Animals , Mice , Aldehyde Reductase/genetics , Sperm Capacitation , Semen , Epithelial Cells , Uterine Diseases/veterinary , Fructose/pharmacology , Glucose/pharmacology
4.
Natl Sci Rev ; 10(6): nwac246, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37181091

ABSTRACT

Acoustic metamaterials have been widely investigated over the past few decades and have realized acoustic parameters that are not achievable using conventional materials. After demonstrating that locally resonant acoustic metamaterials are capable of acting as subwavelength unit cells, researchers have evaluated the possibility of breaking the classical limitations of the material mass density and bulk modulus. Combined with theoretical analysis, additive manufacturing and engineering applications, acoustic metamaterials have demonstrated extraordinary capabilities, including negative refraction, cloaking, beam formation and super-resolution imaging. Owing to the complexity of impedance boundaries and mode transitions, there are still challenges in freely manipulating acoustic propagation in an underwater environment. This review summarizes the developments in underwater acoustic metamaterials over the past 20 years, which include underwater acoustic invisibility cloaking, underwater beam formation, underwater metasurfaces and phase engineering, underwater topological acoustics and underwater acoustic metamaterial absorbers. With the evolution of underwater metamaterials and the timeline of scientific advances, underwater acoustic metamaterials have demonstrated exciting applications in underwater resource development, target recognition, imaging, noise reduction, navigation and communication.

5.
Environ Monit Assess ; 195(6): 724, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37227532

ABSTRACT

Soil carbon and nitrogen levels are key indicators of soil fertility and are used to assess ecological value and safeguard the environment. Previous studies have focused on the contributions of vegetation, topography, physical and chemical qualities, and meteorology to soil carbon and nitrogen change, but there has been little consideration of landscape and ecological environment types as potential driving forces. The study investigated the horizontal and vertical distribution and influencing factors of total carbon and total nitrogen in soil at 0-20 and 20-50 cm depths in the source region of the Heihe River. A total of 16 influencing factors related to soil, vegetation, landscape, and ecological environment were selected, and their individual and synergistic effects on the distributions of total carbon and total nitrogen in soil were assessed. The results show gradually decreasing average values of soil total carbon and total nitrogen from the surface layer to the bottom layer, with larger values in the southeast part of the sampling region and smaller values in the northwest. Larger values of soil total carbon and total nitrogen at sampling points are distributed in areas with higher clay and silt and lower soil bulk density, pH, and sand. For environmental factors, larger values of soil total carbon and total nitrogen are distributed in areas with higher annual rainfall, net primary productivity, vegetation index, and urban building index, and lower surface moisture, maximum patch index, boundary density, and bare soil index. Among soil factors, soil bulk density and silt are most closely associated with soil total carbon and total nitrogen. Among surface factors, vegetation index, soil erosion, and urban building index have the greatest influence on vertical distribution, and maximum patch index, surface moisture, and net primary productivity have the greatest influence on horizontal distribution. In conclusion, vegetation, landscape, and soil physical properties all have a significant impact on the distribution of soil carbon and nitrogen, suggesting better strategies to improve soil fertility.


Subject(s)
Nitrogen , Soil , Soil/chemistry , Nitrogen/analysis , Carbon/analysis , Rivers , Environmental Monitoring , China
6.
Reproduction ; 165(4): 457-474, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36745023

ABSTRACT

In brief: Impaired spermatogenesis resulting from disturbed cholesterol metabolism due to intake of high-fat diet (HFD) has been widely recognized, however, the role of preprotein invertase subtilin 9 (PCSK9), which is a negative regulator of cholesterol metabolism, has never been reported. This study aims to reveal the role of PCSK9 on spermatogenesis induced by HFD in mice. Abstract: Long-term consumption of a high-fat diet (HFD) is an important factor that leads to impaired spermatogenesis exhibiting poor sperm quantity and quality. However, the mechanism of this is yet to be elucidated. Disrupted cholesterol homeostasis is one of many crucial pathological factors which could contribute to impaired spermatogenesis. As a negative regulator of cholesterol metabolism, preprotein invertase subtilin 9 (PCSK9) mediates low density lipoprotein receptor (LDLR) degradation to the lysosome, thereby reducing the expression of LDLR on the cell membrane and increasing serum low-density lipoprotein cholesterol level, resulting in lipid metabolism disorders. Here, we aim to study whether PCSK9 is a pathological factor for impaired spermatogenesis induced by HFD and the underlying mechanism. To meet the purpose of our study, we utilized wild-type C57BL/6 male mice and PCSK9 knockout mice with same background as experimental subjects and alirocumab, a PCSK9 inhibitor, was used for treatment. Results indicated that HFD induced higher PCSK9 expression in serum, liver, and testes, and serum PCSK9 is negatively correlated with spermatogenesis, while both PCSK9 inhibitor treatment and PCSK9 knockout methodologies ameliorated impaired lipid metabolism and spermatogenesis in mice fed a HFD. This could be due to the overexpression of PCSK9 induced by HFD leading to dyslipidemia, resulting in testicular lipotoxicity, thus activating the Bcl-2-Bax-Caspase3 apoptosis signaling pathway in testes, particularly in Leydig cells. Our study demonstrates that PCSK9 is an important pathological factor in the dysfunction of spermatogenesis in mice induced by HFD. This finding could provide innovative ideas for the diagnosis and treatment of male infertility.


Subject(s)
Diet, High-Fat , Proprotein Convertase 9 , Animals , Male , Mice , beta-Fructofuranosidase , Cholesterol , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9/genetics , Semen
7.
Biochem Biophys Res Commun ; 647: 47-54, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36716645

ABSTRACT

The aim of this study was to observe the effect of a simulated liver tissue injury microenvironment on the directed differentiation of umbilical cord mesenchymal stem cells into hepatocytes with CYP450 metabolic activity in vitro, and to explore the mechanisms underlying this directed differentiation. Normal and damaged liver tissue homogenate supernatants (LHS and CCl4-LHS, respectively) were used as induction fluids. After induction for different durations, Western blot and RT-PCR were used to measure the protein and gene expression of the hepatocellular proteins AFP, CK18, ALB, and the CYP450 family. Simultaneously, the metabolic activity of CYP450 in hepatocytes was determined. Compared with the LHS and CCl4-LHS controls, the LHS and CCl4-LHS induction groups showed a significantly elevated protein and gene expression of AFP, CK18, ALB, CYP1A1/2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 (P < 0.05). The metabolic activity of CYP450 in hepatocytes was increased (P < 0.05). In addition, compared with the LHS group, the CCl4-LHS group induced cell differentiation more rapidly and with a higher efficiency. The results suggested that a liver injury microenvironment is conducive for the directed differentiation of umbilical cord mesenchymal stem cells into hepatocytes with metabolic enzyme activity.


Subject(s)
Mesenchymal Stem Cells , alpha-Fetoproteins , Liver , Hepatocytes/metabolism , Cell Differentiation , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Umbilical Cord , Cells, Cultured
8.
Life Sci ; 313: 121224, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435224

ABSTRACT

AIMS: Polycystic ovary syndrome (PCOS) is a common endocrine disorder in the women of childbearing age. It is characterized by hyperandrogenism and abnormal follicular growth and ovulation. The polyol pathway is a glucose metabolism bypass pathway initiated by aldose reductase (ADR). Androgen induces the expression of ADR in the male reproductive tract, which has a general physiological significance for male reproductive function. Here we investigate whether hyperandrogenemia in PCOS leads to increased flux of the polyol pathway in ovarian tissue, which in turn affects follicular maturation and ovulation through oxidative stress. MAIN METHODS: We used clinical epidemiological methods to collect serum and granulosa cells from clinical subjects for a clinical case-control study. At the same time, cell biology and molecular biology techniques were used to conduct animal and cell experiments to further explore the mechanism of hyperandrogen-induced ovarian polyol pathway hyperactivity and damage to ovarian function. KEY FINDINGS: Here, we find that hyperandrogenism of PCOS can induce the expression of ovarian aldose reductase, which leads to the increase of the polyol pathway flux, and affects ovarian function through excessive oxidative stress. SIGNIFICANCE: Our research has enriched the pathological mechanism of PCOS and may provide a new clue for the clinical treatment of PCOS.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Humans , Animals , Female , Male , Polycystic Ovary Syndrome/metabolism , Hyperandrogenism/metabolism , Aldehyde Reductase/metabolism , Case-Control Studies , Oxidative Stress
9.
Immunology ; 168(2): 302-319, 2023 02.
Article in English | MEDLINE | ID: mdl-36054819

ABSTRACT

Although recent studies have revealed the relationship between Fc Fragment of IgE Receptor Ig (FCER1G) and human tumours, there is still a lack of a more comprehensive pan-cancer analysis of FCER1G as an immune-related gene. In this study, we investigated the expression pattern and prognostic value of FCER1G based on multiple databases. Subsequently, we further explored the role of FCER1G in tumour proliferation and metastasis, as well as its genomic alterations and DNA methylation levels, we next assessed the association between FCER1G and the immune infiltrating cells of the tumour microenvironment in different cancers and verified it by immunohistochemical staining. The correlation between FCER1G and immune checkpoint genes expression and its predictive power in the immune checkpoint blockade treatment cohorts were used to evaluate the importance of FCER1G in immunotherapy. Enrichment analysis of FCER1G-associated partners was also performed. In addition, we substantiated the expression of FCER1G in specific cell types of different tumours using single-cell RNA sequencing data from different databases. Our research results showed that FCER1G is up-regulated in most tumour. Positive associations were found between FCER1G expression and tumour prognosis, proliferation, and metastasis, we also found that FCER1G is closely related to the tumour microenvironment and tumour immunity. Moreover, FCER1G-associated partners were enriched in pathways associated with neutrophils activation. Finally, we confirmed that FCER1G was mainly expressed in monocyte/macrophages of the tumour microenvironment. In conclusion, our findings provided a comprehensive understanding of FCER1G in oncogenesis and tumour immunology among various tumours and demonstrated its potential value in prognosis prediction and tumour immunotherapy.


Subject(s)
Neoplasms , Receptors, IgE , Humans , Immunoglobulin Fc Fragments , Tumor Microenvironment/genetics , Neoplasms/genetics , Carcinogenesis , Prognosis , Biomarkers, Tumor
10.
PLoS One ; 17(12): e0278907, 2022.
Article in English | MEDLINE | ID: mdl-36520790

ABSTRACT

OBJECTIVE: This study offers meta-analytic data on the potential association between epilepsy and depression especially for the prevalence of depression in epilepsy or vice versa. METHODS: The relevant studies were searched and identified from nine electronic databases. Studies that mentioned the prevalence and/or incidence of epilepsy and depression were included. Hand searches were also included. The search language was English and the search time was through May 2022. Where feasible, random-effects models were used to generate pooled estimates. RESULTS: After screening electronic databases and other resources, 48 studies from 6,234 citations were included in this meta-analysis. The period prevalence of epilepsy ranged from 1% to 6% in patients with depression. In population-based settings, the pooled period prevalence of depression in patients with epilepsy was 27% (95% CI, 23-31) and 34% in clinical settings (95% CI, 30-39). Twenty studies reported that seizure frequency, low income, unemployment of the patients, perception of stigma, anxiety, being female, unmarried status, disease course, worse quality of life, higher disability scores, and focal-impaired awareness seizures were risk factors for depression. CONCLUSION: Our study found that epilepsy was associated with an increased risk of depression. Depression was associated with the severity of epilepsy.


Subject(s)
Epilepsies, Partial , Epilepsy , Humans , Female , Male , Depression/complications , Depression/epidemiology , Quality of Life , Epilepsy/complications , Epilepsy/epidemiology , Seizures/complications
11.
Front Immunol ; 13: 1008865, 2022.
Article in English | MEDLINE | ID: mdl-36389789

ABSTRACT

Due to the molecular heterogeneity, most bladder cancer (BLCA) patients show no pathological responses to immunotherapy and chemotherapy yet suffer from their toxicity. This study identified and validated three distinct and stable molecular clusters of BLCA in cross-platform databases based on personalized immune and inflammatory characteristics. H&E-stained histopathology images confirmed the distinct infiltration of immune and inflammatory cells among clusters. Cluster-A was characterized by a favorable prognosis and low immune and inflammatory infiltration but showed the highest abundance of prognosis-related favorable immune cell and inflammatory activity. Cluster-B featured the worst prognosis and high immune infiltration, but numerous unfavorable immune cells exist. Cluster-C had a favorable prognosis and the highest immune and inflammatory infiltration. Based on machine learning, a highly precise predictive model (immune and inflammatory responses signature, IIRS), including FN1, IL10, MYC, CD247, and TLR2, was developed and validated to identify the high IIRS-score group that had a poor prognosis and advanced clinical characteristics. Compared to other published models, IIRS showed the highest AUC in 5 years of overall survival (OS) and a favorable predictive value in predicting 1- and 3- year OS. Moreover, IIRS showed an excellent performance in predicting immunotherapy and chemotherapy's response. According to immunohistochemistry and qRT-PCR, IIRS genes were differentially expressed between tumor tissues with corresponding normal or adjacent tissues. Finally, immunohistochemical and H&E-stained analyses were performed on the bladder tissues of 13 BLCA patients to further demonstrate that the IIRS score is a valid substitute for IIR patterns and can contribute to identifying patients with poor clinical and histopathology characteristics. In conclusion, we established a novel IIRS depicting an IIR pattern that could independently predict OS and acts as a highly precise predictive biomarker for advanced clinical characters and the responses to immunotherapy and chemotherapy.


Subject(s)
Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Prognosis , Urinary Bladder , Immunohistochemistry , Risk Factors
12.
Micromachines (Basel) ; 13(9)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36144161

ABSTRACT

Tactile perception is an irreplaceable source of information for humans to explore the surrounding environment and has advantages over sight and hearing in processing the material properties and detailed shapes of objects. However, with the increasing uncertainty and complexity of tactile perception features, it is often difficult to collect highly available pure tactile datasets for research in the field of tactile perception. Here, we have proposed a method for object recognition on a purely tactile dataset and provide the original tactile dataset. First, we improved the differential evolution (DE) algorithm and then used the DE algorithm to optimize the important parameter of the Gaussian kernel function of the support vector machine (SVM) to improve the accuracy of pure tactile target recognition. The experimental comparison results show that our method has a better target recognition effect than the classical machine learning algorithm. We hope to further improve the generalizability of this method and provide an important reference for research in the field of tactile perception and recognition.

13.
J Acoust Soc Am ; 151(6): 3573, 2022 06.
Article in English | MEDLINE | ID: mdl-35778211

ABSTRACT

Odontocetes have evolved special acoustic structures in the forehead to modulate echolocation and communication signals into directional beams to facilitate feeding and social behaviors. Whistle directivity was addressed for the Indo-Pacific humpback dolphin (Sousa chinensis) by developing numerical models in the current paper. Directivity was first examined at the fundamental frequency 5 kHz, and simulations were then extended to the harmonics of 10, 15, 20, 25, and 30 kHz. At 5 kHz, the -3 dB beam widths in the vertical and horizontal planes were 149.3° and 119.4°, corresponding to the directivity indexes (DIs) of 4.4 and 5.4 dB, respectively. More importantly, we incorporated directivity of the fundamental frequency and harmonics to produce an overall beam, resulting in -3 dB beam widths of 77.2° and 62.9° and DIs of 8.2 and 9.7 dB in the vertical and horizontal planes, respectively. Harmonics can enhance the directivity of fundamental frequency by 3.8 and 4.3 dB, respectively. These results suggested the transmission system can modulate whistles into directional projection, and harmonics can improve DI.


Subject(s)
Dolphins , Echolocation , Acoustics , Animals , Sound Spectrography , Vocalization, Animal
14.
J Ovarian Res ; 15(1): 26, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35168642

ABSTRACT

BACKGROUND: Ovarian mucinous carcinoma is a disease that requires unique treatment. But for a long time, guidelines for ovarian serous carcinoma have been used for the treatment of ovarian mucinous carcinoma. This study aimed to construct and validate nomograms for predicting the overall survival (OS) and cancer-specific survival (CSS) in patients with ovarian mucinous adenocarcinoma. METHODS: In this study, patients initially diagnosed with ovarian mucinous adenocarcinoma from 2004 to 2015 were screened from the Surveillance, Epidemiology, and End Results (SEER) database, and divided into the training group and the validation group at a ratio of 7:3. Independent risk factors for OS and CSS were determined by multivariate Cox regression analysis, and nomograms were constructed and validated. RESULTS: In this study, 1309 patients with ovarian mucinous adenocarcinoma were finally screened and randomly divided into 917 cases in the training group and 392 cases in the validation group according to a 7:3 ratio. Multivariate Cox regression analysis showed that the independent risk factors of OS were age, race, T_stage, N_stage, M_stage, grade, CA125, and chemotherapy. Independent risk factors of CSS were age, race, marital, T_stage, N_stage, M_stage, grade, CA125, and chemotherapy. According to the above results, the nomograms of OS and CSS in ovarian mucinous adenocarcinoma were constructed. In the training group, the C-index of the OS nomogram was 0.845 (95% CI: 0.821-0.869) and the C-index of the CSS nomogram was 0.862 (95%CI: 0.838-0.886). In the validation group, the C-index of the OS nomogram was 0.843 (95% CI: 0.810-0.876) and the C-index of the CSS nomogram was 0.841 (95%CI: 0.806-0.876). The calibration curve showed the consistency between the predicted results and the actual results, indicating the high accuracy of the nomogram. CONCLUSION: The nomogram provides 3-year and 5-year OS and CSS predictions for patients with ovarian mucinous adenocarcinoma, which helps clinicians predict the prognosis of patients and formulate appropriate treatment plans.


Subject(s)
Adenocarcinoma, Mucinous/mortality , Adenocarcinoma, Mucinous/secondary , Nomograms , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Adenocarcinoma, Mucinous/blood , Adenocarcinoma, Mucinous/therapy , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Area Under Curve , CA-125 Antigen/blood , Child , Female , Humans , Kaplan-Meier Estimate , Marital Status , Membrane Proteins/blood , Middle Aged , Neoplasm Grading , Neoplasm Staging , Ovarian Neoplasms/blood , Ovarian Neoplasms/therapy , Prognosis , Proportional Hazards Models , ROC Curve , Race Factors , Risk Factors , SEER Program , Survival Rate , Young Adult
15.
J Cell Physiol ; 237(2): 1532-1546, 2022 02.
Article in English | MEDLINE | ID: mdl-34755904

ABSTRACT

Endometrial epithelial cells (EECs) and stromal cells (ESCs) have a close functional association. During the peri-implantation period, EECs with enhanced functional activities secrete a variety of paracrine factors to promote the decidualization of ESCs. However, little is known about the specific process by which EECs secrete paracrine factors to induce the decidualization of ESCs. Some evidence suggests that the activation of sodium-glucose cotransporter 3a (SGLT3a) induces the depolarization of ESCs to affect their function. Therefore, SGLT3a acts as a sensor molecule in certain cell types. In this study, the expression of SGLT3a was investigated in EECs to determine whether its levels increased during the peri-implantation period in female mice. The activation of SGLT3a in mouse EECs induced Na+ -dependent depolarization of the cell membrane and an influx of extracellular Ca2+ , which further promoted the expression and release of the paracrine factors prostaglandin E2 (PGE2) and F2-alpha (PGF2α) by upregulating the expression of cyclooxygenase-2. In turn, PGE2 and PGF2α induced the decidualization of ESCs. Importantly, we identified SGLT3a as a key molecule involved in the cross-talk between EECs and ESCs during the process of uterine decidualization.


Subject(s)
Decidua , Dinoprostone , Sodium-Glucose Transport Proteins/metabolism , Animals , Cells, Cultured , Dinoprost/metabolism , Dinoprostone/metabolism , Endometrium/metabolism , Epithelial Cells/metabolism , Female , Mice , Stromal Cells/metabolism
16.
Reproduction ; 162(6): 397-410, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34554110

ABSTRACT

The incidence of polycystic ovary syndrome (PCOS) due to high-fat diet (HFD) consumption has been increasing significantly. However, the mechanism by which a HFD contributes to the pathogenesis of PCOS has not been elucidated. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein that regulates cholesterol metabolism. Our previous study revealed abnormally high PCSK9 levels in serum from patients with PCOS and in serum and hepatic and ovarian tissues from PCOS model mice, suggesting that PCSK9 is involved in the pathogenesis of PCOS. However, the factor that induces high PCSK9 expression in PCOS remains unclear. In this study, Pcsk9 knockout mice were used to further explore the role of PCSK9 in PCOS. We also studied the effects of a HFD on the expression of PCSK9 and sterol regulatory element-binding protein 2 (SREBP2), a regulator of cholesterol homeostasis and a key transcription factor that regulates the expression of PCSK9, and the roles of these proteins in PCOS pathology. Our results indicated HFD may play an important role by inducing abnormally high PCSK9 expression via SREBP2 upregulation. We further investigated the effects of an effective SREBP inhibitor, fatostain, and found that it could reduce HFD-induced PCSK9 expression, ameliorate hyperlipidemia and improve follicular development in PCOS model mice. Our study thus further elucidates the important role of an HFD in the pathogenesis of PCOS and provides a new clue in the prevention and treatment of this disorder.


Subject(s)
Polycystic Ovary Syndrome , Proprotein Convertase 9 , Animals , Diet, High-Fat/adverse effects , Female , Humans , Mice , Mice, Knockout , Polycystic Ovary Syndrome/etiology , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Up-Regulation
17.
Reprod Sci ; 28(11): 3094-3108, 2021 11.
Article in English | MEDLINE | ID: mdl-34460091

ABSTRACT

Many functional activities of endometrium epithelium are energy consuming which are very important for maintaining intrauterine environment needed by early embryonic development and establishment of implantation window. Glucose is a main energy supplier and one of the main components of intrauterine fluid. Obviously, glucose transports in endometrium epithelium involve in for these activities but their functions have not been elucidated. In this research, we observed a spatiotemporal pattern of sodium glucose transporter 1 (SGLT1) expression in the mouse endometrium. We also determined that progesterone can promote the expression of SGLT1 in the mouse endometrial epithelium in response to the action of oestrogen. Treatment with the SGLT1 inhibitor phlorizin or small interfering RNA specific for SGLT1 (SGLT1-siRNA) altered glucose uptake in primary cultured endometrial epithelial cells, which exhibited reduced ATP levels and AMPK activation. The injection of phlorizin or SGLT1-siRNA into one uterine horn of each mouse on day 2 of pregnancy led to an increased glucose concentration in the uterine fluid and decreased number of harvested normal blastocysts and decreased expression of integrin αVß3 in endometrial epithelium and increased expression of mucin 1 and lactoferrin in endometrial epithelium and the uterine homogenates exhibited activated AMPK, a decreased ATP level on day 4, and a decreased number of implantation sites on day 5. In embryo transfer experiments, pre-treatment of the uterine horn with phlorizin or SGLT1-siRNA during the implantation window led to a decreased embryo implantation rate on day 5 of pregnancy, even when embryos from normal donor mice were used. In conclusion, SGLT1, which participates in glucose transport in the mouse endometrial epithelium, inhibition and/or reduced expression of SGLT1 affects early embryo development by altering the glucose concentration in the uterine fluid. Inhibition and/or reduced expression of SGLT1 also affects embryo implantation by influencing energy metabolism in epithelial cells, which consequently influences implantation-related functional activities.


Subject(s)
Embryo Implantation/physiology , Embryonic Development/physiology , Endometrium/metabolism , Epithelium/metabolism , Gene Expression Regulation, Developmental/physiology , Sodium-Glucose Transporter 1/biosynthesis , Animals , Embryo Transfer/methods , Female , Glucose/metabolism , Mice , Pregnancy , Sodium-Glucose Transporter 1/genetics
18.
J Acoust Soc Am ; 150(1): 225, 2021 07.
Article in English | MEDLINE | ID: mdl-34340515

ABSTRACT

The sound-transmission, beam-formation, and sound-reception processes of a short-finned pilot whale (Globicephala macrorhynchus) were investigated using computed tomography (CT) scanning and numerical simulation. The results showed that sound propagations in the forehead were modulated by the upper jaw, air components, and soft tissues, which attributed to the beam formation in the external acoustic field. These structures owned different acoustic impedance and formed a multiphasic sound transmission system that can modulate sounds into a beam. The reception pathways composed of the solid mandible and acoustic fats in the lower head conducted sounds into the tympano-periotic complex. In the simulations, sounds were emitted in the forehead transmission system and propagated into water to interrogate a steel cylinder. The resulting echoes can be interpreted from multiple perspectives, including amplitude, waveform, and spectrum, to obtain the acoustic cues of the steel cylinder. By taking the short-finned pilot whale as an example, this study provides meaningful information to further deepen our understanding of biosonar system operations, and may expand sound-reception theory in odontocetes.


Subject(s)
Fin Whale , Whales, Pilot , Acoustics , Animals , Sound , Sound Spectrography
19.
Cancer Cell Int ; 21(1): 408, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34332611

ABSTRACT

BACKGROUND: Epigenetic modulation by noncoding RNAs substantially contributes to human cancer development, but noncoding RNAs involvement in bladder cancer remains poorly understood. This study investigated the role of long noncoding RNA (lncRNA) lnc-STYK1-2 in tumorigenesis in cancerous bladder cells. METHODS: Differential lncRNA and mRNA profiles were characterized by high-throughput RNA sequencing combined with validation via quantitative PCR. Bladder cancer cell proliferation was assessed through MTS, and bladder cancer cell migration and invasion were assessed through a Transwell system. The in vivo tumorigenesis of bladder cancer cells was evaluated using the cancer cell line-based xenograft model. The dual-luciferase reporter assay verified the association of miR-146b-5p with lnc-STYK1-2 and the target gene. Protein abundances and phosphorylation were detected by Western blotting. RESULTS: Alterations in lncRNA profiles, including decreased lnc-STYK1-2 expression, were detected in bladder cancer tissues compared with adjacent noncancerous tissues. lnc-STYK1-2 silencing effectively promoted proliferation, migration, and invasion in two bladder cancer cell lines, 5637 and T24, and their tumorigenesis in nude mice. lnc-STYK1-2 siRNA promoted miR-146b-5p and reduced ITGA2 expression in bladder cancer cells. Moreover, miR-146b-5p suppressed ITGA2 expression in bladder cancer cells through direct association. Also, lnc-STYK1-2 directly associated with miR-146b-5p. Finally, miR-146b-5p inhibitors abrogated the alterations in bladder cell functions, ITGA2 expression, and phosphorylation of AKT, STAT3, and P65 proteins in 5637 and T24 cells induced by lnc-STYK1-2 silencing. CONCLUSION: lnc-STYK1-2 inhibited bladder cancer cell proliferation, migration, and tumorigenesis by targeting miR-146b-5p to regulate ITGA2 expression and AKT/STAT3/NF-kB signaling.

20.
Front Physiol ; 12: 674924, 2021.
Article in English | MEDLINE | ID: mdl-34248664

ABSTRACT

GLUT4 is involved in rapid glucose uptake among various kinds of cells to contribute to glucose homeostasis. Prior data have reported that aberrant glucose metabolism by GLUT4 dysfunction in the uterus could be responsible for infertility and increased miscarriage. However, the expression and precise functions of GLUT4 in the endometrium under physiological conditions remain unknown or controversial. In this study, we observed that GLUT4 exhibits a spatiotemporal expression in mouse uterus on pregnant days 1-4; its expression especially increased on pregnant day 4 during the window of implantation. We also determined that estrogen, in conjunction with progesterone, promotes the expression of GLUT4 in the endometrial epithelium in vivo or in vitro. GLUT4 is an important transporter that mediates glucose transport in endometrial epithelial cells (EECs) in vitro or in vivo. In vitro, glucose uptake decreased in mouse EECs when the cells were treated with GLUT4 small interfering RNA (siRNA). In vivo, the injection of GLUT4-siRNA into one side of the mouse uterine horns resulted in an increased glucose concentration in the uterine fluid on pregnant day 4, although it was still lower than in blood, and impaired endometrial receptivity by inhibiting pinopode formation and the expressions of leukemia inhibitory factor (LIF) and integrin ανß3, finally affecting embryonic development and implantation. Overall, the obtained results indicate that GLUT4 in the endometrial epithelium affects embryo development by altering glucose concentration in the uterine fluid. It can also affect implantation by impairing endometrial receptivity due to dysfunction of GLUT4.

SELECTION OF CITATIONS
SEARCH DETAIL
...