Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(44): 9334-9345, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37906738

ABSTRACT

The accurate determination of chemical properties is known to have a critical impact on multiple fundamental chemical problems but is deeply hindered by the steep algebraic scaling of electron correlation calculations and the exponential scaling of quantum nuclear dynamics. With the advent of new quantum computing hardware and associated developments in creating new paradigms for quantum software, this avenue has been recognized as perhaps one way to address exponentially complex challenges in quantum chemistry and molecular dynamics. In this paper, we discuss a new approach to drastically reduce the quantum circuit depth (by several orders of magnitude) and help improve the accuracy in the quantum computation of electron correlation energies for large molecular systems. The method is derived from a graph-theoretic approach to molecular fragmentation and enables us to create a family of projection operators that decompose quantum circuits into separate unitary processes. Some of these processes can be treated on quantum hardware and others on classical hardware in a completely asynchronous and parallel fashion. Numerical benchmarks are provided through the computation of unitary coupled-cluster singles and doubles (UCCSD) energies for medium-sized protonated and neutral water clusters using the new quantum algorithms presented here.

2.
J Chem Theory Comput ; 18(5): 2885-2899, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35412836

ABSTRACT

We present a procedure to reduce the depth of quantum circuits and improve the accuracy of results in computing post-Hartree-Fock electronic structure energies in large molecular systems. The method is based on molecular fragmentation where a molecular system is divided into overlapping fragments through a graph-theoretic procedure. This allows us to create a set of projection operators that decompose the unitary evolution of the full system into separate sets of processes, some of which can be treated on quantum hardware and others on classical hardware. Thus, we develop a procedure for an electronic structure that can be asynchronously spawned onto a potentially large ensemble of classical and quantum hardware systems. We demonstrate this method by computing Unitary Coupled Cluster Singles and Doubles (UCCSD) energies for a set of [H2]n clusters, with n ranging from 4 to 128. We implement our methodology using quantum circuits, and when these quantum circuits are processed on a quantum simulator, we obtain energies in agreement with the UCCSD energies in the milli-hartree energy range. We also show that our circuit decomposition approach yields up to 9 orders of magnitude reduction in the number of CNOT gates and quantum circuit depth for the large-sized clusters when compared to a standard quantum circuit implementation available on IBM's Quantum Information Science kit, known as Qiskit.

3.
J Chem Theory Comput ; 17(5): 2672-2690, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33891416

ABSTRACT

We present a weighted-graph-theoretic approach to adaptively compute contributions from many-body approximations for smooth and accurate post-Hartree-Fock (pHF) ab initio molecular dynamics (AIMD) of highly fluxional chemical systems. This approach is ONIOM-like, where the full system is treated at a computationally feasible quality of treatment (density functional theory (DFT) for the size of systems considered in this publication), which is then improved through a perturbative correction that captures local many-body interactions up to a certain order within a higher level of theory (post-Hartree-Fock in this publication) described through graph-theoretic techniques. Due to the fluxional and dynamical nature of the systems studied here, these graphical representations evolve during dynamics. As a result, energetic "hops" appear as the graphical representation deforms with the evolution of the chemical and physical properties of the system. In this paper, we introduce dynamically weighted, linear combinations of graphs, where the transition between graphical representations is smoothly achieved by considering a range of neighboring graphical representations at a given instant during dynamics. We compare these trajectories with those obtained from a set of trajectories where the range of local many-body interactions considered is increased, sometimes to the maximum available limit, which yields conservative trajectories as the order of interactions is increased. The weighted-graph approach presents improved dynamics trajectories while only using lower-order many-body interaction terms. The methods are compared by computing dynamical properties through time-correlation functions and structural distribution functions. In all cases, the weighted-graph approach provides accurate results at a lower cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...