Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Clin Cosmet Investig Dermatol ; 17: 167-171, 2024.
Article in English | MEDLINE | ID: mdl-38283797

ABSTRACT

Toxic epidermal necrolysis (TEN) is a type of drug eruption in dermatology emergencies that is rare in clinical practice but has a high mortality rate. The main causes are drug and viral infections. Unfortunately, no expert consensus on treating this disease exists, and a standard therapy is absent. Up to now, glucocorticoids combined with gamma globulin are commonly used in clinical practice, but their efficacy is highly controversial. This study reports on a 7-year-old girl with TEN who did not respond to traditional therapy, such as methylprednisolone combined with gamma globulin, but was finally cured with an additional low-dose etanercept. The results showed that etanercept therapy in paediatric TEN is safe, reliable and worth recommending.

2.
Nat Commun ; 14(1): 8082, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057310

ABSTRACT

The pathogenesis of thyroid dysgenesis (TD) is not well understood. Here, using a combination of single-cell RNA and spatial transcriptome sequencing, we identify a subgroup of NF-κB-activated thyrocytes located at the center of thyroid tissues in postnatal mice, which maintained a partially mesenchymal phenotype. These cells actively protruded out of the thyroid primordium and generated new follicles in zebrafish embryos through continuous tracing. Suppressing NF-κB signaling affected thyrocyte migration and follicle formation, leading to a TD-like phenotype in both mice and zebrafish. Interestingly, during thyroid folliculogenesis, myeloid cells played a crucial role in promoting thyrocyte migration by maintaining close contact and secreting TNF-α. We found that cebpa mutant zebrafish, in which all myeloid cells were depleted, exhibited thyrocyte migration defects. Taken together, our results suggest that myeloid-derived TNF-α-induced NF-κB activation plays a critical role in promoting the migration of vertebrate thyrocytes for follicle generation.


Subject(s)
NF-kappa B , Thyroid Epithelial Cells , Animals , Mice , Myeloid Cells , Tumor Necrosis Factor-alpha , Zebrafish
3.
J Environ Public Health ; 2022: 3033943, 2022.
Article in English | MEDLINE | ID: mdl-36034624

ABSTRACT

The status of French as a language has improved to some extent in recent years as a result of the exchange and blending of cultures from various nations. Each language, including French, must undergo a protracted process in order to become more widely spoken. It is essential to develop top-notch French interpreters in order to lower the barriers preventing cross-border communication. The teaching of French interpretation has recently received more attention in many colleges, but the issue of a single teaching method has long persisted. In recent years, a new approach to teaching the liberal arts has emerged. Its main goal is to implement comprehensive interdisciplinary teaching by fusing contemporary information technology with traditional liberal arts instruction. This paper conducted a cutting-edge study on the teaching method of French interpretation against the backdrop of the new liberal arts in order to alter the teaching strategy and increase teaching effectiveness. In this paper, an intelligent interpretation teaching system was constructed using information technology. Through text classification algorithms, it incorporated and optimized teaching resources. According to the experimental findings, the teaching process was optimized, and the teaching efficiency increased by 7.94% when French interpretation was taught against a backdrop of new liberal arts.


Subject(s)
Humanities , Language , Communication , Universities
4.
Clin Endocrinol (Oxf) ; 96(4): 617-626, 2022 04.
Article in English | MEDLINE | ID: mdl-34374102

ABSTRACT

OBJECTIVE: Congenital hypothyroidism (CH) is known to be due to thyroid dyshormonogenesis (DH), which is mostly inherited in an autosomal recessive inheritance pattern or thyroid dysgenesis (TD), whose inheritance pattern is controversial and whose molecular etiology remains poorly understood. DESIGN AND METHODS: The variants in 37 candidate genes of CH, including 25 genes related to TD, were screened by targeted exon sequencing in 205 Chinese patients whose CH cannot be explained by biallelic variants in genes related to DH. The inheritance pattern of the genes was analyzed in family trios or quartets. RESULTS: Of the 205 patients, 83 patients carried at least one variant in 19 genes related to TD, and 59 of those 83 patients harbored more than two variants in distinct candidate genes for CH. Biallelic or de novo variants in the genes related to TD in Chinese patients are rare. We also found nine probands carried only one heterozygous variant in the genes related to TD that were inherited from a euthyroid either paternal or maternal parent. These findings did not support the monogenic inheritance pattern of the genes related to TD in CH patients. Notably, in family trio or quartet analysis, of 36 patients carrying more than two variants in distinct genes, 24 patients carried these variants inherited from both their parents, which indicated that the oligogenic inheritance pattern of the genes related to TD should be considered in CH. CONCLUSIONS: Our study expanded the variant spectrum of the genes related to TD in Chinese CH patients. It is rare that CH in Chinese patients could be explained by monogenic germline variants in genes related to TD. The hypothesis of an oligogenic origin of the CH should be considered.


Subject(s)
Congenital Hypothyroidism , Thyroid Dysgenesis , China , Congenital Hypothyroidism/diagnosis , Congenital Hypothyroidism/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation/genetics , Thyroid Dysgenesis/genetics
5.
Cell Prolif ; 54(9): e13107, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34346124

ABSTRACT

OBJECTIVES: In recent years, cellular senescence has attracted a lot of interest in researchers due to its involvement in non-alcoholic fatty liver disease (NAFLD). However, the mechanism of cellular senescence is not clear. The purpose of this study was to investigate the effect of curcumol on hepatocyte senescence in NAFLD and the molecular mechanisms implicated. MATERIALS AND METHODS: LVG Golden Syrian hamsters, C57BL/6J mice and human hepatocyte cell line LO2 were used. Cellular senescence was assessed by analyses of senescence marker SA-ß-gal, p16 and p21, H3K9me3, γ-H2AX and telomerase activity. RESULTS: The results showed that curcumol could inhibit hepatocyte senescence in both in vivo and in vitro NAFLD models, and the mechanism might be related to its regulation of ferritinophagy and subsequent alleviation of iron overload. Moreover, overexpression of nuclear receptor coactivator 4 (NCOA4) weakened the effect of curcumol on ferritinophagy-mediated iron overload and cellular senescence. Furthermore, we demonstrated that curcumol reduced the expression of NCOA4 by Yes-associated protein (YAP). In addition, depression of YAP could impair the effect of curcumol on iron overload and cellular senescence. CONCLUSION: Our results clarified the mechanism of curcumol inhibition of hepatocyte senescence through YAP/NCOA4 regulation of ferritinophagy in NAFLD. These findings provided a promising option of curcumol to regulate cellular senescence by target YAP/NCOA4 for the treatment of NAFLD.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy/drug effects , Cellular Senescence/drug effects , Ferritins/metabolism , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Nuclear Receptor Coactivators/metabolism , Sesquiterpenes/pharmacology , Animals , Cell Line , Hepatocytes/metabolism , Humans , Iron/metabolism , Male , Mesocricetus , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , YAP-Signaling Proteins
6.
Genet Med ; 23(10): 1944-1951, 2021 10.
Article in English | MEDLINE | ID: mdl-34194003

ABSTRACT

PURPOSE: Congenital hypothyroidism (CH) is a common congenital endocrine disorder in humans. CH-related diseases such as athyreosis, thyroid ectopy, and hypoplasia are primarily caused by dysgenic thyroid development. However, the underlying molecular mechanisms remain unknown. METHODS: To identify novel CH candidate genes, 192 CH patients were enrolled, and target sequencing of 21 known CH-related genes was performed. The remaining 98 CH patients carrying no known genes were subjected to exome sequencing (ES). The functions of the identified variants were confirmed using thyroid epithelial cells in vitro and in zebrafish model organisms in vivo. RESULTS: Four pathogenic GBP1 variations from three patients were identified. In zebrafish embryos, gbp1 knockdown caused defective thyroid primordium morphogenesis and hypothyroidism. The thyroid cells were stuck together and failed to dissociate from each other to form individual follicles in gbp1-deficient embryos. Furthermore, defects were restored with wild-type human GBP1 (hGBP1) messenger RNA (mRNA) except for mutated hGBP1 (p.H150Y, p.L187P) overexpression. GBP1 promoted ß-catenin translocation into the cytosol and suppressed the formation of cellular adhesion complexes. Suppression of cell-cell adhesion restored the thyroid primordium growth defect observed in gbp1-deficient zebrafish embryos. CONCLUSION: This study provides further understanding regarding thyroid development and shows that defective cellular remodeling could cause congenital hypothyroidism.


Subject(s)
Congenital Hypothyroidism , GTP-Binding Proteins , Thyroid Dysgenesis , Thyroid Gland/growth & development , Animals , Congenital Hypothyroidism/genetics , Disease Models, Animal , GTP-Binding Proteins/genetics , Humans , Morphogenesis , Mutation , Up-Regulation , Zebrafish/genetics
7.
J Nanobiotechnology ; 19(1): 196, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215269

ABSTRACT

BACKGROUND: The development of alternative anti-angiogenesis therapy for choroidal neovascularization (CNV) remains a great challenge. Nanoparticle systems have emerged as a new form of drug delivery in ocular diseases. Here, we report the construction and characterization of arginine-glycine-aspartic acid (RGD)-conjugated polyethyleneimine (PEI) as a vehicle to load antioxidant salvianolic acid A (SAA) for targeted anti-angiogenesis therapy of CNV. In this study, PEI was consecutively modified with polyethylene glycol (PEG) conjugated RGD segments, 3-(4'-hydroxyphenyl) propionic acid-Osu (HPAO), and fluorescein isothiocyanate (FI), followed by acetylation of the remaining PEI surface amines to generate the multifunctional PEI vehicle PEI.NHAc-FI-HPAO-(PEG-RGD) (for short, RGD-PEI). The formed RGD-PEI was utilized as an effective vehicle platform to load SAA. RESULTS: We showed that RGD-PEI/SAA complexes displayed desirable water dispersibility, low cytotoxicity, and sustainable release of SAA under different pH conditions. It could be specifically taken up by retinal pigment epithelium (RPE) cells which highly expressed ɑvß5 integrin receptors in vitro and selectively accumulated in CNV lesions in vivo. Moreover, the complexes displayed specific therapeutic efficacy in a mouse model of laser induced CNV, and the slow elimination of the complexes in the vitreous cavity was verified by SPECT imaging after 131I radiolabeling. The histological examinations further confirmed the biocompatibility of RGD-PEI/SAA. CONCLUSIONS: The results suggest that the designed RGD-PEI/SAA complexes may be a potential alternative anti-angiogenesis therapy for posterior ocular neovascular diseases.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Choroidal Neovascularization/drug therapy , Multifunctional Nanoparticles/chemistry , Oligopeptides/chemistry , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Caffeic Acids , Cell Line, Tumor , Choroidal Neovascularization/pathology , Disease Models, Animal , Drug Liberation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lactates , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Proton Pump Inhibitors/chemistry , Proton Pump Inhibitors/pharmacology , Wound Healing/drug effects
8.
Front Endocrinol (Lausanne) ; 12: 620117, 2021.
Article in English | MEDLINE | ID: mdl-33815280

ABSTRACT

Background and Objectives: Defects in the human sodium/iodide symporter (SLC5A5) gene have been reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify SLC5A5 mutations in Chinese patients with CH and to evaluate the function of the mutation. Methods: Two hundred and seventy-three patients with primary CH were screened for mutations in SLC5A5 using next-generation sequencing. We investigated the expression and cellular localization of the novel compound heterozygous mutation in SLC5A5. The functional activity of the mutants was further examined in vitro. Results: In 273 patients with CH, two previously undescribed pathogenic mutations p.Gly51AlafsTer45 (G51fs) and p.Gly421Arg (G421R) in a compound heterozygous state in SLC5A5 were identified in a pediatric patient. G51fs was located in the first intercellular loop connecting transmembrane segment I and II, whereas G421R was in the transmembrane segment (TMS) XI. G51fs and G421R resulted in a truncated NIS and reduced protein expression, respectively. In vitro experiments further showed that the normal function of iodine transport of sodium-iodide symporter (NIS) mutants was markedly impaired. Conclusion: The undescribed compound heterozygous mutation of SLC5A5 was discovered in a Chinese CH patient. The mutation led to significantly reduced NIS expression and impaired iodide transport function accompanied by the impaired location of the NIS on the plasma membrane. Our study thus provides further insights into the roles of SLC5A5 in CH pathogenesis.


Subject(s)
Congenital Hypothyroidism/genetics , Mutation , Symporters/genetics , China , Female , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn
9.
Front Pharmacol ; 12: 638215, 2021.
Article in English | MEDLINE | ID: mdl-33790794

ABSTRACT

Background: The purpose of this study is to investigate the antiangiogenic effect of Sanguinarine chloride (SC) on models of age-related macular degeneration (AMD) both in vivo and in vitro. Methods: Choroidal neovascularization (CNV) was conducted by laser photocoagulation in C57BL6/J mice. SC (2.5 µM, 2 µl/eye) was intravitreally injected immediately after laser injury. The control group received an equal amount of PBS. 7 days after laser injury, CNV severity was evaluated using fundus fluorescein angiography, hematoxylin and eosin (H&E) staining, and choroid flat-mount staining. Vascular endothelial growth factor (VEGF) expression in the retina/choroid complex was measured by western blot analysis and ELISA kit. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to investigate the effects of SC on cell tube formation, migration, and cytotoxicity. The expression of VEGF-induced expression of extracellular signal-regulated kinase (ERK)1/2, protein kinase B (AKT), mitogen-activated protein kinases (p38-MAPK) in vitro and laser induced VEGF expression in vivo were also analyzed. Results: SC (≤2.5 µM) was safe both in vitro and in vivo. Intravitreal injection of SC restrained the formation of laser induced CNV in mice and decreased VEGF expression in the laser site of the retina/choroid complex. In vitro, SC inhibited VEGF-induced tube formation and endothelial cell migration by decreasing the phosphorylation of AKT, ERK1/2, and p38-MAPK in HRMECs. Conclusions: SC could inhibit laser-induced CNV formation via down-regulating VEGF expression and restrain the VEGF-induced tube formation and endothelial migration. Therefore, SC could be a potential candidate for the treatment of wet AMD.

10.
Mol Cell Endocrinol ; 528: 111223, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33667596

ABSTRACT

The transcription factor GLIS3 is an important factor in hormone biosynthesis and thyroid development, and mutations in GLIS3 are relatively rare. Deletions of more than one of the 11 exons of GLIS3 occur in most patients with various extrathyroidal abnormalities and congenital hypothyroidism (CH), and only 18 missense variants of GLIS3 related to thyroid disease have been reported. The aim of this study was to report the family history and molecular basis of patients with CH who carry GLIS3 variants. Three hundred and fifty-three non-consanguineous infants with CH were recruited and subjected to targeted exome sequencing of CH-related genes. The transcriptional activity and cellular localization of the variants in GLIS3 were investigated in vitro. We identified 20 heterozygous GLIS3 exonic missense variants, including eight novel sites, in 19 patients with CH. One patient carried compound heterozygous GLIS3 variants (p.His34Arg and p.Pro835Leu). None of the variants affected the nuclear localization. However, three variants (p.His34Arg, p.Pro835Leu, and p.Ser893Phe) located in the N-terminal and C-terminal regions of the GLIS3 protein downregulated the transcriptional activation of several genes required for thyroid hormone (TH) biosynthesis. This study of patients with CH extends the current knowledge surrounding the spectrum of GLIS3 variants and the mechanisms by which they cause TH biosynthesis defects.


Subject(s)
Cell Nucleus/metabolism , Congenital Hypothyroidism/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Polymorphism, Single Nucleotide , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Analysis, DNA/methods , Trans-Activators/genetics , Trans-Activators/metabolism , China , Congenital Hypothyroidism/metabolism , Exome , Female , Gene Expression Regulation , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn , Male , Mutation, Missense , Protein Transport , Thyroid Hormones/biosynthesis
11.
Stem Cell Res Ther ; 12(1): 24, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413548

ABSTRACT

BACKGROUND AND AIM: Subretinal fibrosis resulting from neovascular age-related macular degeneration (nAMD) is one of the major causes of serious and irreversible vision loss worldwide, and no definite and effective treatment exists currently. Retinal pigmented epithelium (RPE) cells are crucial in maintaining the visual function of normal eyes and its epithelial-mesenchymal transition (EMT) is associated with the pathogenesis of subretinal fibrosis. Stem cell-derived exosomes have been reported to play a crucial role in tissue fibrosis by transferring their molecular contents. This study aimed to explore the effects of human umbilical cord-derived mesenchymal stem cell exosomes (hucMSC-Exo) on subretinal fibrosis in vivo and in vitro and to investigate the anti-fibrotic mechanism of action of hucMSC-Exo. METHODS: In this study, human umbilical cord-derived mesenchymal stem cells (hucMSCs) were successfully cultured and identified, and exosomes were isolated from the supernatant by ultracentrifugation. A laser-induced choroidal neovascularization (CNV) and subretinal fibrosis model indicated that the intravitreal administration of hucMSC-Exo effectively alleviated subretinal fibrosis in vivo. Furthermore, hucMSC-Exo could efficaciously suppress the migration of retinal pigmented epithelial (RPE) cells and promote the mesenchymal-epithelial transition by delivering miR-27b-3p. The latent binding of miR-27b-3p to homeobox protein Hox-C6 (HOXC6) was analyzed by bioinformatics prediction and luciferase reporter assays. RESULTS: This study showed that the intravitreal injection of hucMSC-Exo effectively ameliorated laser-induced CNV and subretinal fibrosis via the suppression of epithelial-mesenchymal transition (EMT) process. In addition, hucMSC-Exo containing miR-27b repressed the EMT process in RPE cells induced by transforming growth factor-beta2 (TGF-ß2) via inhibiting HOXC6 expression. CONCLUSIONS: The present study showed that HucMSC-derived exosomal miR-27b could reverse the process of EMT induced by TGF-ß2 via inhibiting HOXC6, indicating that the exosomal miR-27b/HOXC6 axis might play a vital role in ameliorating subretinal fibrosis. The present study proposed a promising therapeutic agent for treating ocular fibrotic diseases and provided insights into the mechanism of action of hucMSC-Exo on subretinal fibrosis.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Epithelial-Mesenchymal Transition , Exosomes/genetics , Fibrosis , Homeodomain Proteins/genetics , Humans , MicroRNAs/genetics , Umbilical Cord
12.
Pak J Pharm Sci ; 31(6): 2403-2410, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30473511

ABSTRACT

This study was design to investigate preventive function of Tongxinluo (TXL) capsule on micro vascular function and endothelial survival in rats model of intestine ischemia/reperfusion (I/R) injury. We randomly divided fifty male Sprague-Dawley rats into Sham group, I/R group, TXL0.4+I/R group, TXL0.8+I/R group, TXL1.6+I/R group (10 rats each). Rat intestine I/R injury was carried out using a model of acute superior mesenteric artery occlusion with 30 min ischemia followed by 60 min reperfusion. The distribution of endothelial apoptosis in intestine was determined by CD31+TUNEL immunofluorescent double staining analysis. VE-Cadherin, ANGPTL4, HMGB1 and NF-κB were determined by immunohistochemical analysis. I/R induced massively endothelial cell apoptosis, accompanied with reduced expression of adherens junction protein VE-Cadherin and up regulation of inflammatory mediator HMGB1 and NF-κB. TXL pretreatment groups (TXL0.4+I/R, TXL0.8+I/R and TXL1.6+I/R group) significantly attenuated endothelial cell apoptosis with a dose-dependent effect. TXL pretreatment could maintain the expression of VE-Cadherin and promote the expression of ANGPTL4 which help to maintain endothelial integrity. TXL pretreatment also exert great influence in inhibiting HMGB1 expression and NF-κB expression induced by I/R. It could be concluded from this study that micro vascular dysfunction and endothelial damage play a causal role in rat intestine I/R injury. TXL pretreatment could significantly prevent the I/R induced pathology of endothelial apoptosis, micro vascular integrity disruption and inflammatory reaction.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Capillary Permeability/drug effects , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/drug effects , Gastrointestinal Agents/pharmacology , Inflammation Mediators/metabolism , Intestines/blood supply , Reperfusion Injury/prevention & control , Angiopoietin-Like Protein 4/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Cytoprotection , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , HMGB1 Protein/metabolism , Male , NF-kappa B/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
13.
Eur J Endocrinol ; 178(6): 623-633, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29650690

ABSTRACT

OBJECTIVE: Congenital hypothyroidism (CH), the most common neonatal metabolic disorder, is characterized by impaired neurodevelopment. Although several candidate genes have been associated with CH, comprehensive screening of causative genes has been limited. DESIGN AND METHODS: One hundred ten patients with primary CH were recruited in this study. All exons and exon-intron boundaries of 21 candidate genes for CH were analyzed by next-generation sequencing. And the inheritance pattern of causative genes was analyzed by the study of family pedigrees. RESULTS: Our results showed that 57 patients (51.82%) carried biallelic mutations (containing compound heterozygous mutations and homozygous mutations) in six genes (DUOX2, DUOXA2, DUOXA1, TG, TPO and TSHR) involved in thyroid hormone synthesis. Autosomal recessive inheritance of CH caused by mutations in DUOX2, DUOXA2, TG and TPO was confirmed by analysis of 22 family pedigrees. Notably, eight mutations in four genes (FOXE1, NKX2-1, PAX8 and HHEX) that lead to thyroid dysgenesis were identified in eight probands. These mutations were heterozygous in all cases and hypothyroidism was not observed in parents of these probands. CONCLUSIONS: Most cases of congenital hypothyroidism in China were caused by thyroid dyshormonogenesis rather than thyroid dysgenesis. This study identified previously reported causative genes for 57/110 Chinese patients and revealed DUOX2 was the most frequently mutated gene in these patients. Our study expanded the mutation spectrum of CH in Chinese patients, which was significantly different from Western countries.


Subject(s)
Asian People/genetics , Congenital Hypothyroidism/genetics , China , Dual Oxidases/genetics , Female , Forkhead Transcription Factors/genetics , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Homeodomain Proteins/genetics , Humans , Infant , Infant, Newborn , Iodide Peroxidase/genetics , Male , Membrane Proteins/genetics , Mutation , PAX8 Transcription Factor/genetics , Pedigree , Receptors, Thyrotropin/genetics , Sequence Analysis, DNA , Thyroglobulin/genetics , Thyroid Dysgenesis/genetics , Thyroid Nuclear Factor 1/genetics , Transcription Factors/genetics
14.
Article in English | MEDLINE | ID: mdl-28638872

ABSTRACT

BACKGROUND: Blood stasis has received increasing attention in research related to traditional Chinese medicine (TCM) and integrative Chinese and Western medicine. More than 90% of research studies use hemorheology indexes to evaluate the establishment of animal blood stasis models rather than pathological methods, as hemorheology index evaluations of blood stasis were short of the consolidated standard. The aim of this study was to evaluate the accuracy of hemorheology indexes in rat models of acute blood stasis (ABS) based on studies in which the ABS model had been confirmed by pathological methods. MATERIALS AND METHODS: We searched the Chinese National Knowledge Infrastructure database (CNKI), Chinese Medical Journal Database (CMJD), Chinese Biology Medicine disc (CBM), Wanfang database, and PubMed for studies of rat blood stasis models; the search identified 18 studies of rat ABS models induced by subcutaneous injection of epinephrine combined with an ice bath. Each included study received a modified Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) score list and methodological quality assessment, then data related to whole blood viscosity, plasma viscosity, platelet aggregation rate, erythrocyte aggregation index, and fibrinogen concentration were extracted. Extracted data were analyzed using Revman 5.3; heterogeneity was tested using Egger's test. RESULTS: A total of 343 studies of rat blood stasis were reviewed. Eighteen studies were included in this meta-analysis; the mean CAMARADES score was 3.5. The rat ABS model revealed a significant increase in whole blood viscosity (medium shear rate), whole blood viscosity (high shear rate), plasma viscosity, platelet aggregation rate, erythrocyte aggregation index, and fibrinogen concentration compared to controls, with weighted mean differences (WMD) of 2.42 mPa/s (95% confidence interval (CI) = 1.73 - 3.10); 1.76 mPa/s (95% CI = 1.28 - 2.24); 0.39 mPa/s (95% CI = 0.24 - 0.55); 13.66% (95% CI = 9.78 - 17.55); 0.84 (95% CI = 0.53 - 1.16); and 1.22 g/L (95% CI = 0.76 - 1.67), respectively. Subgroup analysis showed that whole blood viscosity, plasma viscosity, and the platelet aggregation rate test methods were more sensitive when measured at 0-24 h than at 24-72 h after induction of blood stasis. CONCLUSIONS: Rat blood stasis studies have incomplete experimental design and quality controls, and thus need an integrated improvement. Meta-analysis of included studies indicated that the unified hemorheology index of whole blood viscosity (medium and high shear rate), platelet aggregation rate, erythrocyte aggregation rate, and fibrinogen concentration might be used for assessment of rat ABS models independent of pathology methods.


Subject(s)
Hematologic Diseases/diagnosis , Acute Disease , Animals , Disease Models, Animal , Hematologic Diseases/blood , Hematologic Diseases/pathology , Hemorheology , Humans , Medicine, Chinese Traditional , Rats
15.
J Tradit Chin Med ; 37(1): 108-15, 2017 02.
Article in English | MEDLINE | ID: mdl-29957919

ABSTRACT

OBJECTIVE: To examine the microvascular pathological characteristics and changes in related injury factors in a rat model of acute blood stasis. METHODS: A total of 75 Sprague-Dawley rats were divided randomly and equally into a control group and four experimental groups assessed at different times after the induction of stasis (0, 1, 3 or 6 h after stasis) (n = 15). The acute blood stasis model was established through rat tail-vein injection of high-molecular-weight dextran. After Electrocardiograph (ECG) detection at predetermined times (0, 1, 3 and 6 h after induction of stasis), the rats were sacrificed and blood and cardiac samples were harvested for analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used for histopathological detection; an enzyme linked immunosorbent assay (ELISA) was used to detect thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-Keto-PGF1α) concentrations; a real-time polymerase chain reaction (PCR) reaction system was used to detect intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule1 (VCAM-1) mRNA expression; western blotting was used to detect vascular endothelial cadherin (VE-cadherin) protein expression. RESULTS: The ST segment in the ECG showed gradual elevation after induction of stasis and continued elevation at a high level at 3 and 6 h. The HE staining showed changes in myocardial cell necrosis and tissue dissociation after the induction of stasis, along with inflammatory infiltration. Results of transmission electron microscopy showed immediate changes in blood stasis and lumen occlusion in the microvasculature, along with endothelial cell swelling. After the induction of stasis, TXB2 concentrations gradually increased while 6-Keto-PGF(1α) concentrations were immediately significantly reduced. The TXB(2)/6-Keto-PGF(1α) ratio was maintained at a high level. ICAM-1 mRNA expression showed an unstable elevation while VCAM-1 mRNA expression was significantly reduced after the induction of stasis. Compared with the control group, VE-cadherin protein expression increased at 0 and 3 h after the induction of stasis, while no change occurred at 1 and 6 h. CONCLUSION: The pathological manifestations of acute blood stasis are microvascular blood retention, lumen stenosis and even occlusion. The condition is also called "blood coagulation and weep" in Traditional Chinese Medicine. The blood stasis model resulted in the injury and necrosis of endothelial cells and cardiomyocytes, along with the presence of an imbalance of vasomotor factor levels, platelet activation, and increases in the expression of adhesion molecules and endothelial barrier dysfunction, which corresponds to "blood failed to nourish" in Traditional Chinese Medicine.


Subject(s)
Myocardial Infarction/pathology , 6-Ketoprostaglandin F1 alpha/blood , Animals , Cell Adhesion Molecules/blood , Disease Models, Animal , Electrocardiography , Heart/physiopathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Male , Microvessels/metabolism , Microvessels/pathology , Microvessels/physiopathology , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocardium/pathology , Rats , Rats, Sprague-Dawley , Thromboxane B2/blood , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
16.
J Tradit Chin Med ; 37(6): 846-853, 2017 Dec.
Article in English | MEDLINE | ID: mdl-32188196

ABSTRACT

OBJECTIVE: To investigate the influence of acute blood stasis on nitric oxide (NO), angiotensin Ⅱ(AngⅡ), angiopoietin-like protein 4 (ANGPTL4) mRNA, neuregulin 1 (NRG-1) mRNA, and platelet endothelial cell adhesion molecule-1 (PECAM-1) in rats with stasis induced by high-molecular-weight dextran (HMWD). METHODS: Seventy-five Sprague Dawley rats were divided randomly into five groups (n = 15 in each group): control group, immediate group, 1 h group, 3 h group, and 6 h group. A model of acute blood stasis was established via injection of HMWD into the tail vein. After performing electrocardiogram at the predetermined times according to the grouping, we collected blood and cardiac samples for hematoxylin-eosin (HE) staining and histopathological examination via transmission electron microscopy. Enzyme-linked immunosorbent assay was used to detect plasma levels of NO, AngⅡ, and fibrinogen. Real-time polymerase chain reaction was used to detect the expression of ANGPTL4 mRNA and NRG-1 mRNA. Immunohistochemical methods were used to detect PECAM-1 protein expression. RESULTS: The rat model of blood stasis showed blood retention in the capillary lumens. The ST segment showed gradual elevation, and was still elevated at 3 and 6 h after induction of blood stasis. HE staining showed myocardial cell necrosis and dissolution after modeling, along with basement membrane rupture and mitochondrial structural damage. Transmission electron microscopy showed endothelial cell swelling and an increase in absorption vesicles immediately after modeling. Endothelial cell apoptosis was increased at 3 and 6 h after modeling. Cardiac muscle fibers were disordered and intercalated discs were blurred immediately after modeling. There were massive numbers of dissolved cardiac muscle fibers, ruptured basement membranes, and mitochondrial structural damage at 3 and 6 h after modeling. NO plasma concentration was significantly reduced immediately and 1 h after modeling, while it was increased at 3 and 6 h. Ang¢ò plasma concentration was decreased immediately after modeling, but increased at 1, 3, and 6 h. Fibrinogen plasma concentration was significantly increased at immediate, 1, 3, and 6 h after modeling. PECAM-1 protein expression was obviously increased immediately after modeling, at 1, 6 h was found mild augment. Expression of AngPTL4 mRNA was increased at immediate, 1, 3, and 6 h after modeling, and was found further augment at 3, and 6 h. Expression of NRG-1 mRNA was increased at immediate, 1, 3, and 6 h after modeling, and the strongest expression was at 1 h. CONCLUSION: The pathological manifestation of acute blood stasis is characterized by microvascular blood retention. Prolonged blood stasis leads to worsening endothelial cell and cardiomyocyte damage, along with imbalances in the expression of vasomotor factors and increased vascular tone. The pathological damage caused by blood stasis also promotes the expression of cell protection factors.

17.
Ther Adv Cardiovasc Dis ; 9(5): 314-24, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26037786

ABSTRACT

BACKGROUND: The blood pressure lowering effect of sesamin has been demonstrated to be associated with the increase in vascular nitric oxide (NO) biological activity by our previous studies and others. The present study was designed to explore the underlying mechanisms involved in the effect of sesamin on aortic NO bioactivity in spontaneously hypertensive rats (SHRs). METHODS: Sesamin was orally administered for 8 consecutive weeks in SHRs. Systolic blood pressure (SBP) was measured using the tail-cuff method. The aortas were isolated and in vitro vascular reactivity studies were performed. Superoxide anion production in carotid arteries was assessed by dihydroethidium fluorescence staining. The protein expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (P-eNOS), dihydrofolate reductase (DHFR), nicotinamide adenine dinucleotide phosphate oxidase subunit p47phox, and copper, zinc superoxide dismutase (Cu/Zn-SOD) in aortas was detected by Western blotting. The dimeric form of eNOS in aortas was determined by low-temperature sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Aortic level of nitrotyrosine and activities of antioxidant enzymes, namely, total SOD (T-SOD), glutathione peroxidase (GPx) and catalase were also detected. RESULTS: In SHRs, sesamin treatment reduced SBP, improved vascular relaxation induced by acetylcholine and enhanced aortic NO bioactivity. Sesamin treatment enhanced NO biosynthesis in SHR aortas was due to upregulated P-eNOS and suppressed eNOS uncoupling, and the latter effect might be attributed to decreased nitrotyrosine and upregulated DHFR. Sesamin also reduced the NO oxidative inactivation and decreased the superoxide anion production through downregulation of p47(phox) and amelioration of eNOS uncoupling. In addition, sesamin treatment did not alter the levels of GPx and catalase activity but obviously reduced the compensatory elevated T-SOD activity and Cu/Zn-SOD protein expression. CONCLUSION: Chronic treatment with sesamin could reduce hypertension and improve endothelial dysfunction through enhancement of NO bioactivity in SHR aortas.


Subject(s)
Antihypertensive Agents/pharmacology , Aorta/drug effects , Dioxoles/pharmacology , Lignans/pharmacology , Nitric Oxide/metabolism , Animals , Antioxidants/metabolism , Aorta/metabolism , Blood Pressure/drug effects , Blotting, Western , Down-Regulation/drug effects , Electrophoresis, Polyacrylamide Gel , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hypertension/drug therapy , Hypertension/physiopathology , Male , Nitric Oxide Synthase Type III/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Superoxide Dismutase/metabolism , Up-Regulation/drug effects
18.
Nutrients ; 7(6): 4689-704, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26066015

ABSTRACT

Advanced glycation end products (AGEs), the direct modulators of ß-cells, have been shown to cause insulin-producing ß-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked ß-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg) and orally treated with sesamin (160 mg/kg) for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and ß-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 µM) and then exposed to AGEs (200 mg/L) for 24 h. Insulin secretion, ß-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced ß-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67(phox) and p22(phox), and reduced NADPH oxidase activity. These results suggest that sesamin protects ß-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Dioxoles/pharmacology , Glycation End Products, Advanced/metabolism , Insulin-Secreting Cells/drug effects , Lignans/pharmacology , Animals , Cells, Cultured , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice , Mice, Inbred C57BL , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
19.
BMC Complement Altern Med ; 14: 254, 2014 Jul 19.
Article in English | MEDLINE | ID: mdl-25038821

ABSTRACT

BACKGROUND: Recent studies have demonstrated that side population (SP) cells isolated from various cancer cell lines and primary tumors possess stem cell-like properties. Sesamin, a food-derived agent, possesses anti-cancer activities both in vitro and in vivo. The present study was designed to determine whether sesamin also have effects on cancer stem-like SP cells from gallbladder cancer (GBC). METHODS: In this study, we sorted SP cells by flow cytometry. SP cells were cultured and treated with sesamin. Tumor-sphere formation, colony formation, Matrigel invasion and tumorigenic potential were determined. Expression of nuclear NF-κB, IL-6, p-Stat3, Twist, E-cadherin and Vimentin was measured by Western blot, immunofluorescence staining or RT-PCR analysis. Nuclear NF-κB activity and IL-6 protein level were assessed with ELISA. Xenograft tumors were generated in nude mice. RESULTS: After treated with sesamin, SP cells differentiated into cells expressing the epithelial marker (E-cadherin). Sesamin effectively affected SP cells stem cell-like characteristics (i.e., tumor-sphere formation, colony-formation, Matrigel invasion), weakened the drug-resistance of SP cells and inhibited tumor growth both in vitro and in vivo. Treatment with sesamin significantly reduced the expression of nuclear NF-κB, IL-6, p-Stat3, Twist and Vimentin (a mesenchymal marker) in SP cells. Nuclear NF-κB activity and IL-6 level were also decreased after treatment with sesamin. CONCLUSION: Food-derived sesamin directs the epithelial differentiation of cancer stem-like SP cells from GBC, which is associated with attenuation of NF-κB-IL-6-Stat3-Twist signal pathway.


Subject(s)
Dioxoles/pharmacology , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/pathology , Lignans/pharmacology , Neoplastic Stem Cells/drug effects , Side-Population Cells/drug effects , Analysis of Variance , Animals , Cadherins/metabolism , Carcinoma/drug therapy , Carcinoma/metabolism , Carcinoma/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Female , Gallbladder Neoplasms/metabolism , Humans , Interleukin-6/metabolism , Mice , Mice, Nude , NF-kappa B/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Side-Population Cells/metabolism , Side-Population Cells/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
20.
Yao Xue Xue Bao ; 48(4): 489-94, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23833934

ABSTRACT

This study is to observe the effects of sequoyitol on the expression of NADPH oxidase subunits p22 phox and p47 phox in rats with type 2 diabetic liver diseases. The model of high fat and high sugar diet as well as intraperitoneal injection of small dose of streptozotocin (STZ, 35 mg x kg(-1)) induced diabetic rat liver disease was used. After sequoyitol (50, 25 and 12.5 mg x kg(-1)) was administrated for 6 weeks, the contents of blood glucose (BG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), hydrogen peroxide (H2O2), NO and insulin (Ins) were measured, liver p22 phox and p47 phox mRNA content was determined with real-time PCR and the expression of p22 phox and p47 phox protein was examined by Western blotting. In addition, pathological changes in liver were observed with HE staining. Sequoyitol could reduce the content of fasting blood glucose, ALT, AST, Ins and H2O2, restore insulin sensitive index (ISI) and weight, elevate liver tissue T-AOC and NO content, reduce the NADPH oxidase subunit liver tissue p22 phox and p47 phox mRNA and protein expression, as well as ameliorate liver pathologic lesions. The results showed that sequoyitol can ease the type 2 diabetic rat liver oxidative stress by lowering NADPH oxidase expression.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Inositol/analogs & derivatives , Liver Diseases/metabolism , NADPH Oxidases/metabolism , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Hydrogen Peroxide/metabolism , Hypoglycemic Agents/pharmacology , Inositol/pharmacology , Insulin/blood , Liver/metabolism , Liver/pathology , Male , NADPH Oxidases/genetics , Nitric Oxide/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , RNA, Messenger/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...