Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892463

ABSTRACT

Zea mays (maize) is a staple food, feed, and industrial crop. Heat stress is one of the major stresses affecting maize production and is usually accompanied by other stresses, such as drought. Our previous study identified a heterotrimer complex, ZmNF-YA1-YB16-YC17, in maize. ZmNF-YA1 and ZmNF-YB16 were positive regulators of the drought stress response and were involved in maize root development. In this study, we investigated whether ZmNF-YA1 confers heat stress tolerance in maize. The nf-ya1 mutant and overexpression lines were used to test the role of ZmNF-YA1 in maize thermotolerance. The nf-ya1 mutant was more temperature-sensitive than the wild-type (WT), while the ZmNF-YA1 overexpression lines showed a thermotolerant phenotype. Higher malondialdehyde (MDA) content and reactive oxygen species (ROS) accumulation were observed in the mutant, followed by WT and overexpression lines after heat stress treatment, while an opposite trend was observed for chlorophyll content. RNA-seq was used to analyze transcriptome changes in nf-ya1 and its wild-type control W22 in response to heat stress. Based on their expression profiles, the heat stress response-related differentially expressed genes (DEGs) in nf-ya1 compared to WT were grouped into seven clusters via k-means clustering. Gene Ontology (GO) enrichment analysis of the DEGs in different clades was performed to elucidate the roles of ZmNF-YA1-mediated transcriptional regulation and their contribution to maize thermotolerance. The loss function of ZmNF-YA1 led to the failure induction of DEGs in GO terms of protein refolding, protein stabilization, and GO terms for various stress responses. Thus, the contribution of ZmNF-YA1 to protein stabilization, refolding, and regulation of abscisic acid (ABA), ROS, and heat/temperature signaling may be the major reason why ZmNF-YA1 overexpression enhanced heat tolerance, and the mutant showed a heat-sensitive phenotype.


Subject(s)
Gene Expression Regulation, Plant , Heat-Shock Response , Plant Proteins , Thermotolerance , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/physiology , Heat-Shock Response/genetics , Thermotolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Mutation , CCAAT-Binding Factor/metabolism , CCAAT-Binding Factor/genetics , Gene Expression Profiling , Transcriptome , Plants, Genetically Modified
2.
Plant Physiol ; 190(2): 1506-1525, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35861438

ABSTRACT

The identification of drought stress regulatory genes is crucial for the genetic improvement of maize (Zea mays L.) yield. Nuclear factors Y (NF-Ys) are important transcription factors, but their roles in the drought stress tolerance of plants and underlying molecular mechanisms are largely unknown. In this work, we used yeast two-hybrid screening to identify potential interactors of ZmNF-YB16 and confirmed the interaction between ZmNF-YA1 and ZmNF-YB16-YC17 and between ZmNF-YA7 and ZmNF-YB16-YC17. ZmNF-YB16 interacted with ZmNF-YC17 via its histone fold domain to form a heterodimer in the cytoplasm and then entered the nucleus to form a heterotrimer with ZmNF-YA1 or ZmNF-YA7 under osmotic stress. Overexpression of ZmNF-YA1 improved drought and salt stress tolerance and root development of maize, whereas zmnf-ya1 mutants exhibited drought and salt stress sensitivity. ZmNF-YA1-mediated transcriptional regulation, especially in JA signaling, histone modification, and chromatin remodeling, could underlie the altered stress tolerance of zmnf-ya1 mutant plants. ZmNF-YA1 bound to promoter CCAAT motifs and directly regulated the expression of multiple genes that play important roles in stress responses and plant development. Comparison of ZmNF-YB16- and ZmNF-YA1-regulated genes showed that ZmNF-YA1 and ZmNF-YB16 have similar biological functions in stress responses but varied functions in other biological processes. Taken together, ZmNF-YA1 is a positive regulator of plant drought and salt stress responses and is involved in the root development of maize, and ZmNF-Y complexes with different subunits may have discrepant functions.


Subject(s)
Droughts , Zea mays , Gene Expression Regulation, Plant , Histones/metabolism , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Zea mays/metabolism
3.
Plants (Basel) ; 11(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35336636

ABSTRACT

Maize is a staple food, feed, and industrial crop. One of the major stresses on maize production is heat stress, which is usually accompanied by other stresses, such as drought or salinity. In this review, we compared the effects of high temperatures on maize production in China. Heat stress disturbs cellular homeostasis and impedes growth and development in plants. Plants have evolved a variety of responses to minimize the damage related to high temperatures. This review summarized the responses in different cell organelles at elevated temperatures, including transcriptional regulation control in the nuclei, unfolded protein response and endoplasmic reticulum-associated protein quality control in the endoplasmic reticulum (ER), photosynthesis in the chloroplast, and other cell activities. Cells coordinate their activities to mediate the collective stresses of unfavorable environments. Accordingly, we evaluated heat stress at the local and systemic levels in in maize. We discussed the physiological and morphological changes in sensing tissues in response to heat stress in maize and the existing knowledge on systemically acquired acclimation in plants. Finally, we discussed the challenges and prospects of promoting corn thermotolerance by breeding and genetic manipulation.

4.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34830019

ABSTRACT

Maize kernels are the harvested portion of the plant and are related to the yield and quality of maize. The endosperm of maize is a large storage organ that constitutes 80-90% of the dry weight of mature kernels. Maize kernels have long been the study of cereal grain development to increase yield. In this study, a natural mutation that causes abnormal kernel development, and displays a shrunken kernel phenotype, was identified and named "shrunken 2008 (sh2008)". The starch grains in sh2008 are loose and have a less proteinaceous matrix surrounding them. The total storage protein and the major storage protein zeins are ~70% of that in the wild-type control (WT); in particular, the 19 kDa and 22 kDa α-zeins. Map-based cloning revealed that sh2008 encodes a GT-2 trihelix transcription factor, ZmThx20. Using CRISPR/Cas9, two other alleles with mutated ZmThx20 were found to have the same abnormal kernel. Shrunken kernels can be rescued by overexpressing normal ZmThx20. Comparative transcriptome analysis of the kernels from sh2008 and WT showed that the GO terms of translation, ribosome, and nutrient reservoir activity were enriched in the down-regulated genes (sh2008/WT). In short, these changes can lead to defects in endosperm development and storage reserve filling in seeds.


Subject(s)
Plant Proteins/genetics , Transcription Factors/genetics , Zea mays/genetics , Zein/genetics , CRISPR-Cas Systems/genetics , Edible Grain/genetics , Edible Grain/growth & development , Endosperm/genetics , Endosperm/growth & development , Gene Expression Regulation, Plant/genetics , Seeds/genetics , Seeds/growth & development , Transcriptome/genetics , Zea mays/growth & development
5.
BMC Plant Biol ; 19(1): 335, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31370805

ABSTRACT

BACKGROUND: Drought is a serious causal factor of reduced crop yields than any other abiotic stresses. As one of the most widely distributed crops, maize plants frequently suffer from drought stress, which causes great losses in the final kernel yield. Drought stress response in plants showed tissue- and developmental stage-specific characteristics. RESULTS: In this study, the ears at the V9 stage, kernels and ear leaf at the 5DAP (days after pollination) stage of maize were used for morphological, physiological and comparative transcriptomics analysis to understand the different features of "sink" or "source" organs and the effects on kernel yield under drought stress conditions. The ABA-, NAC-mediate signaling pathway, osmotic protective substance synthesis and protein folding response were identified as common drought stress response in the three organs. Tissue-specific drought stress responses and the regulators were identified, they were highly correlated with growth, physiological adaptation and yield loss under drought stress. For ears, drought stress inhibited ear elongation, led to the abnormal differentiation of the paired spikelet, and auxin signaling involved in the regulation of cell division and growth and primordium development changes. In the kernels, reduced kernel size caused by drought stress was observed, and the obvious differences of auxin, BR and cytokine signaling transduction appeared, which indicated the modification in carbohydrate metabolism, cell differentiation and growth retardation. For the ear leaf, dramatically and synergistically reduced the expression of photosynthesis genes were observed when suffered from drought stress, the ABA- and NAC- mediate signaling pathway played important roles in the regulation of photosynthesis. CONCLUSIONS: Transcriptomic changes caused by drought were highly correlated with developmental and physiological adaptation, which was closely related to the final yield of maize, and a sketch of tissue- and developmental stage-specific responses to drought stress in maize was drafted.


Subject(s)
Zea mays/physiology , Crop Production , Dehydration , Edible Grain/growth & development , Edible Grain/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , Photosynthesis , Plant Leaves/growth & development , Plant Leaves/physiology , Zea mays/growth & development , Zea mays/metabolism
6.
J Exp Bot ; 70(19): 5471-5486, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31267122

ABSTRACT

Drought stress is the most important environmental stress limiting maize production. ZmPTF1, a phosphate starvation-induced basic helix-loop-helix (bHLH) transcription factor, contributes to root development and low-phosphate tolerance in maize. Here, ZmPTF1 expression, drought tolerance, and the underlying mechanisms were studied by using maize ZmPTF1 overexpression lines and mutants. ZmPTF1 was found to be a positive regulator of root development, ABA synthesis, signalling pathways, and drought tolerance. ZmPTF1 was also found to bind to the G-box element within the promoter of 9-cis-epoxycarotenoid dioxygenase (NCED), C-repeat-binding factor (CBF4), ATAF2/NAC081, NAC30, and other transcription factors, and to act as a positive regulator of the expression of those genes. The dramatically upregulated NCEDs led to increased abscisic acid (ABA) synthesis and activation of the ABA signalling pathway. The up-regulated transcription factors hierarchically regulate the expression of genes involved in root development, stress responses, and modifications of transcriptional regulation. The improved root system, increased ABA content, and activated ABA-, CBF4-, ATAF2-, and NAC30-mediated stress responses increased the drought tolerance of the ZmPTF1 overexpression lines, while the mutants showed opposite trends. This study describes a useful gene for transgenic breeding and helps us understand the role of a bHLH protein in plant root development and stress responses.


Subject(s)
Abscisic Acid/metabolism , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Zea mays/growth & development , Zea mays/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Stress, Physiological , Transcription Factors/metabolism , Zea mays/metabolism
7.
Plant Signal Behav ; 14(9): 1632689, 2019.
Article in English | MEDLINE | ID: mdl-31208285

ABSTRACT

The local auxin gradient has a decisive role in auxin signaling, auxin-mediated development and abiotic stress response. PINFORMED (PIN)-formed auxin efflux transporters are very important for determining the direction of auxin transport and maintaining a local auxin concentration gradient. In this study, all candidate PIN genes from the current maize genome sequence database were identified and categorized based on amino acid similarity. The expression pattern of these PINs was analyzed in maize inbred line DH4866, which was selected from the progeny of 7922 and 478, and served as the female parent line of many hybrids in Shandong Denghai Seeds Co Ltd (China). Tissue-specific expression patterns indicated that they may have different roles in different stages of development, especially in the root system. Promoter motif analysis of four maize PIN1 genes and their expression levels in response to NAA, low phosphate levels and PEG treatment indicated that ZmPIN1a and ZmPIN1b may contribute more than ZmPIN1c and ZmPIN1d to root growth regulation and abiotic stress response. Analysis of the ZmPIN1a and ZmPIN1b transgenic lines (in DH4866) indicated that they have different effects on root development and growth, with ZmPIN1a increasing the number of lateral roots and inhibiting their elongation to form a developed root system, while ZmPIN1b increases root biomass by promoting the growth of both lateral and seminal roots. These results indicated that maize PIN1 genes function in coordination during maize development and in response to abiotic stress.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Zea mays/genetics , Biological Transport/genetics , Genes, Plant , Membrane Transport Proteins/metabolism , Phylogeny , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Stress, Physiological/genetics , Zea mays/growth & development , Zea mays/metabolism
8.
Plant Sci ; 283: 177-188, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31128687

ABSTRACT

Phytohormone signaling is involved in the low-phosphate (LP) response and causes root system changes. To understand the roles of auxin and gibberellic acid (GA) in the maize response to LP stress, inbred line Q319 was used to identify the changes in root morphology and the gene expression response to LP stress with or without exogenous auxin, GA or their inhibitors. The root morphology, IAA and GAs concentration and genes related to the LP response, cell elongation and division, auxin transport and signaling, and GA synthesis and signaling were analyzed. The LP-induced maize root morphological adaption was dependent on changes in the expression of related genes, like IPS1, pht1;1 LPR1b, KRPs, and EXPB1-4. The altered local auxin concentration and signaling were involved in promoting axial root elongation and reducing lateral root density and length under LP conditions, which were regulated by PID and PP2A activity and the auxin signaling pathway. The upregulation of the GA synthesis genes AN1, GA20ox1, and GA20ox2 and the downregulation of the GA inactive genes GA2ox1 and GA2ox2 were observed in maize roots subjected to LP stress, and the increased GA biosynthesis and signaling were involved in root growth. Both hormones participate in LP stress response and jointly regulated root modification and LP acclimation in maize.


Subject(s)
Gibberellins/physiology , Indoleacetic Acids/metabolism , Phosphates/deficiency , Plant Growth Regulators/physiology , Zea mays/metabolism , Gene Expression Regulation, Plant , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Plant Roots/anatomy & histology , Plant Roots/metabolism , Real-Time Polymerase Chain Reaction , Stress, Physiological , Zea mays/anatomy & histology , Zea mays/physiology
9.
Plant J ; 99(1): 81-97, 2019 07.
Article in English | MEDLINE | ID: mdl-30851211

ABSTRACT

T. HALOPHILA HOMEOBOX PROTEIN 1(TsHD1) cloned from the halophyte Thellungiella halophila is a homeodomain (HD) transcription factor gene and functions as a collaborator of TsNAC1. TsHD1 can form heterodimers with TsNAC1 via the interaction between its zinc finger (ZF) domain and the A subdomain of TsNAC1. The overexpression of TsHD1 improved the heat stress resistance of T. halophila and retarded its vegetative growth slightly. The co-overexpression of TsHD1 and TsNAC1 highly improved heat and drought stress resistance by increasing the accumulation of heat shock proteins and enhancing the expression levels of drought stress response genes, such as MYB DOMAIN PROTEIN 77 and MYB DOMAIN PROTEIN 96 (MYB77and MYB96) and SALT TOLERANCE ZINC FINGER 10 and SALT TOLERANCE ZINC FINGER 18 (ZAT10 and ZAT18), but seriously retarded the vegetative growth of T. halophila by restraining cell expansion. The heterodimer of TsHD1 and TsNAC1 has higher transcriptional activation activity and higher stability compared with the homodimer of TsHD1 or TsNAC1. The binding sites of the TsHD1 and TsNAC1 heterodimers were found to exist in the promoters of most upregulated genes in Cauliflower mosaic virus 35S promoter (P35S)::TsHD1 and P35S::TsNAC1 transgene lines compared with the wild type using RNA-seq and genomic data analyses. Moreover, the binding sites in the promoter region of the most downregulated genes were located in the vicinity of the TATA-box. This study reveals that TsNAC1 and TsHD1 play roles in plant growth and abiotic stress resistance synergistically, and the effects depend on the heterodimer binding to the specific target sites in the promoter region.


Subject(s)
Brassicaceae/metabolism , Brassicaceae/physiology , Binding Sites/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Stress, Physiological/genetics , Stress, Physiological/physiology
10.
Front Plant Sci ; 9: 1495, 2018.
Article in English | MEDLINE | ID: mdl-30374363

ABSTRACT

Heterologous expression of a transcription factor (TF) gene in a related species is a useful method for crop breeding and the identification of gene function. The differences in phenotype and target gene expression between HE lines (with the heterologous expression of an ortholog) and OX lines (with an overexpressed native gene) must be understood. EsNAC1, encoding a NAC protein and the ortholog of RD26 in Arabidopsis, was cloned from Eutrema salsugineum and introduced into Arabidopsis. The heterologous expression of EsNAC1 retarded the vegetative growth of Arabidopsis, and the transgenic plants (HE lines) showed much greater resistance to salt and oxidative stress than the wild type, Col-0. The HE lines accumulated 2.8-fold (8-h light) of starch, 1.42-fold of Chlorophyll a and 1.31-fold of Chlorophyll b than Col-0 during the light period, with obvious differences compared to the RD26OX line. A genome-wide ChIP (chromatin immunoprecipitation analysis)-on-chip assay revealed that EsNAC1 targeted promoters of different genes compared to RD26. In HE lines, EsNAC1 could specifically upregulate the expression level of TF genes NAC DOMAIN CONTAINING PROTEIN 62 (ANAC062), INTEGRASE-TYPE DNA-BINDING PROTEIN (TINY2), and MYB HYPOCOTYL ELONGATION-RELATED (MYBH) to show more effective abiotic stress resistance than RD26OX lines. Moreover, DELTA1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1), TRYPTOPHAN BIOSYNTHESIS 2 (TRP2) or GALACTINOL SYNTHASE 2 (GOLS2), was also specifically regulated by EsNAC1 to retard the vegetative growth of HE lines, but not the brassinosteroid singling pathway in RD26OX lines. These differences in phenotypes and metabolism between the HE lines and the RD26OX line implied that the differential features could be produced from the diversity of target genes in the transgenic plants when the ortholog was introduced.

11.
Plant Physiol ; 178(2): 753-770, 2018 10.
Article in English | MEDLINE | ID: mdl-30126870

ABSTRACT

In plants, bZIP (basic leucine zipper) transcription factors regulate diverse processes such as development and stress responses. However, few of these transcription factors have been functionally characterized in maize (Zea mays). In this study, we characterized the bZIP transcription factor gene ZmbZIP4 from maize. ZmbZIP4 was differentially expressed in various organs of maize and was induced by high salinity, drought, heat, cold, and abscisic acid treatment in seedlings. A transactivation assay in yeast demonstrated that ZmbZIP4 functioned as a transcriptional activator. A genome-wide screen for ZmbZIP4 targets by immunoprecipitation sequencing revealed that ZmbZIP4 could positively regulate a number of stress response genes, such as ZmLEA2, ZmRD20, ZmRD21, ZmRab18, ZmNHX3, ZmGEA6, and ZmERD, and some abscisic acid synthesis-related genes, including NCED, ABA1, AAO3, and LOS5 In addition, ZmbZIP4 targets some root development-related genes, including ZmLRP1, ZmSCR, ZmIAA8, ZmIAA14, ZmARF2, and ZmARF3, and overexpression of ZmbZIP4 resulted in an increased number of lateral roots, longer primary roots, and an improved root system. Increased abscisic acid synthesis by overexpression of ZmbZIP4 also can increase the plant's ability to resist abiotic stress. Thus, ZmbZIP4 is a positive regulator of plant abiotic stress responses and is involved in root development in maize.


Subject(s)
Abscisic Acid/biosynthesis , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Stress, Physiological , Zea mays/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Cold Temperature , Droughts , Hot Temperature , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Salinity , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Zea mays/growth & development , Zea mays/physiology
12.
Plant Sci ; 274: 369-382, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30080625

ABSTRACT

Salinity is a major factor limiting plant growth and agricultural production worldwide. Glycine betaine (GB) is one of the most universal osmoprotectants that protects plants from environmental stresses. In this study, transgenic cotton co-expressing ApGSMT2g and ApDMT2g was generated by Agrobacterium-mediated transformation. Compared with wild-type (WT), co-expression of ApGSMT2g and ApDMT2g in cotton results in higher GB amounts, higher relative water content (RWC), lower osmotic potential, more K+, and less Na+ under salt stress, which contributes to maintaining intracellular osmoregulation and K+/Na+ homeostasis and thus confers higher salt tolerance and more vigorous growth. Furthermore, co-expressing ApGSMT2g and ApDMT2g in cotton leads to better performance of PSII, greater photosynthesis capacity, and finally, improves plant growth and increases cotton seed yield compared to WT under salt stress. The reason for the better performance of PSII in transgenic cotton is the higher quantum yield and a more reasonable quantum ratio distribution than WT under salt stress. Co-expressing ApGSMT2g and ApDMT2g in cotton also reduces membrane damage and increases superoxide dismutase (SOD) activity compared to WT under salt stress. Our results indicate that transgenic ApGSMT2g and ApDMT2g cotton shows higher salt tolerance and more seed cotton yield in saline fields compared to wild-type.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/genetics , Gossypium/genetics , Bacterial Proteins/genetics , Gossypium/physiology , Photosynthesis , Plants, Genetically Modified , Salinity , Salt Tolerance , Sodium/metabolism , Sodium Chloride/pharmacology , Stress, Physiological
13.
Front Plant Sci ; 9: 709, 2018.
Article in English | MEDLINE | ID: mdl-29896208

ABSTRACT

ZmNF-YB16 is a basic NF-YB superfamily member and a member of a transcription factor complex composed of NF-YA, NF-YB, and NF-YC in maize. ZmNF-YB16 was transformed into the inbred maize line B104 to produce homozygous overexpression lines. ZmNF-YB16 overexpression improves dehydration and drought stress resistance in maize plants during vegetative and reproductive stages by maintaining higher photosynthesis and increases the maize grain yield under normal and drought stress conditions. Based on the examination of differentially expressed genes between the wild-type (WT) and transgenic lines by quantitative real time PCR (qRT-PCR), ZmNF-YB16 overexpression increased the expression of genes encoding antioxidant enzymes, the antioxidant synthase, and molecular chaperones associated with the endoplasmic reticulum (ER) stress response, and improved protection mechanism for photosynthesis system II. Plants that overexpression ZmNF-YB16 showed a higher rate of photosynthesis and antioxidant enzyme activity, better membrane stability and lower electrolyte leakage under control and drought stress conditions. These results suggested that ZmNF-YB16 played an important role in drought resistance in maize by regulating the expression of a number of genes involved in photosynthesis, the cellular antioxidant capacity and the ER stress response.

14.
Plant Biotechnol J ; 16(1): 234-244, 2018 01.
Article in English | MEDLINE | ID: mdl-28557341

ABSTRACT

Grain weight and grain number are important crop yield determinants. DA1 and DAR1 are the ubiquitin receptors that function as the negative regulators of cell proliferation during development in Arabidopsis. An arginine to lysine mutant at amino acid site 358 could lead to the da1-1 phenotype, which results in an increased organ size and larger seeds. In this study, the mutated ZmDA1 (Zmda1) and mutated ZmDAR1 (Zmdar1) driven by the maize ubiquitin promoter were separately introduced into maize elite inbred line DH4866. The grain yield of the transgenic plants was 15% greater than that of the wild-type in 3 years of field trials due to improvements in the grain number, weight and starch content. Interestingly, the over-expression of Zmda1 and Zmdar1 promoted kernel development, resulting in a more developed basal endosperm transfer cell layer (BETL) than WT and enhanced expression of starch synthase genes. This study suggests that the over-expression of the mutated ZmDA1 or ZmDAR1 genes improves the sugar imports into the sink organ and starch synthesis in maize kernels.


Subject(s)
Plants, Genetically Modified/metabolism , Seeds/metabolism , Starch/metabolism , Zea mays/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Seeds/genetics , Zea mays/genetics
15.
Plant Physiol ; 176(1): 742-756, 2018 01.
Article in English | MEDLINE | ID: mdl-29122985

ABSTRACT

NAC proteins constitute one of the largest families of plant-specific transcription factors, and a number of these proteins participate in the regulation of plant development and responses to abiotic stress. T. HALOPHILA STRESS RELATED NAC1 (TsNAC1), cloned from the halophyte Thellungiella halophila, is a NAC transcription factor gene, and its overexpression can improve abiotic stress resistance, especially in salt stress tolerance, in both T. halophila and Arabidopsis (Arabidopsis thaliana) and retard the growth of these plants. In this study, the transcriptional activation activity of TsNAC1 and RD26 from Arabidopsis was compared with the target genes' promoter regions of TsNAC1 from T. halophila, and the results showed that the transcriptional activation activity of TsNAC1 was higher in tobacco (Nicotiana tabacum) and yeast. The target sequence of the promoter from the target genes also was identified, and TsNAC1 was shown to target the positive regulators of ion transportation, such as T. HALOPHILA H+-PPASE1, and the transcription factors MYB HYPOCOTYL ELONGATION-RELATED and HOMEOBOX12 In addition, TsNAC1 negatively regulates the expansion of cells, inhibits LIGHT-DEPENDENT SHORT HYPOCOTYLS1 and UDP-XYLOSYLTRANSFERASE2, and directly controls the expression of MULTICOPY SUPPRESSOR OF IRA14 Based on these results, we propose that TsNAC1 functions as an important upstream regulator of plant abiotic stress responses and vegetative growth.


Subject(s)
Brassicaceae/growth & development , Brassicaceae/physiology , Plant Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Amino Acid Sequence , Brassicaceae/drug effects , Brassicaceae/genetics , Cell Proliferation/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Genetic Association Studies , Models, Biological , Plant Proteins/chemistry , Plant Proteins/genetics , Promoter Regions, Genetic , Reproducibility of Results , Saccharomyces cerevisiae/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Transcription Factors/chemistry , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
16.
Plant Biotechnol J ; 16(1): 86-99, 2018 01.
Article in English | MEDLINE | ID: mdl-28499064

ABSTRACT

Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases.


Subject(s)
Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Zea mays/growth & development , Zea mays/metabolism , Gene Expression Regulation, Plant/physiology , Plant Breeding , Plant Proteins/metabolism
17.
BMC Genomics ; 18(1): 979, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258435

ABSTRACT

BACKGROUND: Nonspecific phospholipase C (NPC), which belongs to a phospholipase C subtype, is a class of phospholipases that hydrolyzes the primary membrane phospholipids, such as phosphatidylcholine, to yield sn-1, 2-diacylglycerol and a phosphorylated head-group. NPC plays multiple physiological roles in lipid metabolism and signaling in plants. To fully understand the putative roles of NPC genes in upland cotton, we cloned NPC genes from Gossypium hirsutum and carried out structural, expression and evolutionary analysis. RESULTS: Eleven NPC genes were cloned from G. hirsutum, which were found on chromosomes scaffold269.1, D03, A07, D07, A08, D11, and scaffold3511_A13. All GhNPCs had typical phosphoesterase domains and have hydrolase activity that acts on ester bonds. GhNPCs were annotated as phospholipase C, which was involved in glycerophospholipid metabolism, ether lipid metabolism, and biosynthesis of secondary metabolites. These GhNPCs showed differential expression patterns in distinct plant tissues and in response to various types of stress (low-phosphate, salt, drought, and abscisic acid). They also had different types and numbers of cis-element. GhNPCs could be classified into four subfamilies. Four pairs of GhNPCs were generated by whole-genome duplication and they underwent purifying selection. CONCLUSIONS: Our results suggested that GhNPCs are involved in regulating key abiotic stress responses and ABA signaling transduction, and they may have various functional roles for different members under complex abiotic stress conditions. Functional divergence may be the evolutionary driving force for the retention of four pairs of duplicate NPCs. Our analysis provides a solid foundation for the further functional characterization of the GhNPC gene family, and leads to potential applications in the genetic improvement of cotton cultivars.


Subject(s)
Gossypium/genetics , Multigene Family , Type C Phospholipases/genetics , Cloning, Molecular , Exons , Gene Expression , Introns , Molecular Sequence Annotation , Nucleotide Motifs , Phylogeny , Promoter Regions, Genetic , Sequence Alignment , Synteny , Type C Phospholipases/chemistry , Type C Phospholipases/classification , Type C Phospholipases/metabolism
18.
PLoS One ; 12(4): e0176538, 2017.
Article in English | MEDLINE | ID: mdl-28448624

ABSTRACT

Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize.


Subject(s)
Phosphates/pharmacology , Plant Roots/growth & development , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Zea mays/growth & development , Zea mays/genetics , Amino Acid Sequence , Cloning, Molecular , Dose-Response Relationship, Drug , Gene Expression , Genomics , Phylogeny , Plant Roots/drug effects , Plants, Genetically Modified , Protein Phosphatase 2/chemistry , Protein Phosphatase 2/deficiency , RNA Interference , Sequence Analysis , Zea mays/drug effects , Zea mays/metabolism
19.
Plant Sci ; 252: 103-117, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717445

ABSTRACT

Maize is a globally important crop, and a low phosphate (LP) supply frequently limits maize yields in many areas. microRNAs (miRNAs) play important roles in plant development and environmental adaptation. In this study, spatio-temporal miRNA transcript profiling and some of the target genes in the roots and leaves of the maize inbred line Q319 were analyzed in response to LP. Complex small RNA populations were detected after LP culture, and they displayed different patterns in the roots and leaves. Differentially expressed miRNAs can be grouped into 'early' miRNAs, which respond rapidly and are often non-specific to phosphate deficiency, and 'late' miRNAs, which alter the morphology, physiology or metabolism of plants upon prolonged phosphate deficiency. miR827 and miR399-mediated posttranscriptional pathway responses to phosphate availability were conserved and species-specific in maize. Abiotic stress-related miRNAs were engaged in interactions with different signaling and/or metabolic pathways. Auxin-related miRNAs and their targets' expression may be involved in root architecture modification and upland growth retardation in maize when subjected to LP. The changes that were found in the expression of miRNAs and their target genes suggested that miRNA regulation/alterations are pivotal mechanisms in maize adaptations to LP environments. A complex regulatory mechanism involving miRNAs in response to the LP environment is present in maize.


Subject(s)
MicroRNAs/physiology , Phosphates/metabolism , Stress, Physiological , Zea mays/genetics , Adaptation, Physiological , DNA Mutational Analysis , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/physiology , Signal Transduction , Zea mays/metabolism , Zea mays/physiology
20.
BMC Plant Biol ; 16(1): 129, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27277671

ABSTRACT

BACKGROUND: The low-phosphate-tolerant maize mutant Qi319-96 was obtained from Qi319 through cellular engineering. To elucidate the molecular mechanisms underlying the low-phosphate tolerance of this mutant, we performed comparative proteome analyses of the leaves of Qi319-96 and Qi319 under inorganic phosphate (Pi)-sufficient and Pi-deficient conditions. RESULTS: Low-phosphorus levels limit plant growth and metabolism. Although the overall phosphorus contents of shoots were not significantly different between Qi319 and Qi319-96, the Pi level of Qi319-96 was 52.94 % higher than that of Qi319. Under low phosphorus conditions, Qi319-96 had increased chlorophyll levels and enhanced photosynthesis. The changes in starch and sucrose contents under these conditions also differed between genotypes. The proteomic changes included 29 (Pi-sufficient) and 71 (Pi-deficient) differentially expressed proteins involved in numerous metabolic processes. Proteome and physiological analyses revealed that Qi319-96 could better remodel the lipid composition of membranes and had higher V-ATPase activity levels than Qi319 under low-phosphate starvation, which enhanced the recycling of intracellular Pi, as reflected by its increased Pi levels. Chlorophyll biosynthesis was improved and the levels, and activities, of several Calvin cycle and "CO2 pump" enzymes were greater in Qi319-96 than in Qi319, which led to a higher rate of photosynthesis under low-phosphate stress in this line compared with in Qi319. CONCLUSIONS: Our results suggest that the increased tolerance of the maize mutant Qi319-96 to low-phosphate levels is owing to its ability to increase Pi availability. Additionally, inbred lines of maize with low-P-tolerant traits could be obtained effectively through cellular engineering.


Subject(s)
Phosphates/metabolism , Phosphorus/metabolism , Proteome/metabolism , Zea mays/genetics , Zea mays/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Mutation , Phosphates/analysis , Photosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/genetics , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...