Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 236: 109676, 2023 11.
Article in English | MEDLINE | ID: mdl-37827442

ABSTRACT

Aging is the most important known risk factor for dry eye is aging, which is associated with changes in the structure and function of the lacrimal gland (LG) and characterized by atrophy, duct blocking lymphocyte infiltration, and reduced protein secretion. Aquaporins (AQP) have been proposed as a potential producer of exocrine gland fluids since exocrine secretion depends on the mobility of water. Therefore, the main topics of this review will be the expression, localization, and function of AQPs in LG. In addition, we review the mechanisms of fluid transport in exocrine gland fluid secretion and discuss the potential role of AQPs in dry eye.


Subject(s)
Aquaporins , Dry Eye Syndromes , Lacrimal Apparatus , Humans , Lacrimal Apparatus/metabolism , Aquaporins/metabolism , Dry Eye Syndromes/metabolism , Biological Transport
2.
Invest Ophthalmol Vis Sci ; 64(12): 27, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37707834

ABSTRACT

Purpose: Dry eye disease (DED) is multifactorial and associated with nerve abnormalities. We explored an Aquaporin 5 (AQP5)-deficiency-induced JunB activation mechanism, which causes abnormal lacrimal gland (LG) nerve distribution through Slit2 upregulation and Netrin-1 repression. Methods: Aqp5 knockout (Aqp5-/-) and wild-type (Aqp5+/+) mice were studied. LGs were permeabilized and stained with neuronal class III ß-tubulin, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). Whole-mount images were acquired through tissue clearing and 3D fluorescence imaging. Mouse primary trigeminal ganglion (TG) neurons were treated with LG extracts and Netrin-1/Slit2 neutralizing antibody. Transcription factor (TF) prediction and chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) experiments verified the JunB binding and regulatory effect on Netrin-1 and Slit2. Results: Three-dimensional tissue and section immunofluorescence showed reduced LG nerves in Aqp5-/- mice, with sympathetic and sensory nerves significantly decreased. Netrin-1 was reduced and Slit2 increased in Aqp5-/- mice LGs. Aqp5+/+ mice LG tissue extracts (TEs) promoted Aqp5-/- TG neurons axon growth, but Netrin-1 neutralizing antibody (NAb) could inhibit that promotion. Aqp5-/- mice LG TEs inhibited Aqp5+/+ TG axon growth, but Slit2 NAb alleviated that inhibition. Furthermore, JunB, a Netrin-1 and Slit2 TF, could bind them and regulate their expression. SR11302, meanwhile, reversed the Netrin-1 and Slit2 shifts caused by AQP5 deficiency. Conclusions: AQP5 deficiency causes LG nerve abnormalities. Persistent JunB activation, the common denominator for Netrin-1 suppression and Slit2 induction, was found in Aqp5-/- mice LG epithelial cells. This affected sensory and sympathetic nerve fibers' distribution in LGs. Our findings provide insights into preventing, reversing, and treating DED.


Subject(s)
Axon Guidance , Lacrimal Apparatus , Netrin-1 , Animals , Mice , Antibodies, Neutralizing , Aquaporin 5/genetics , Mice, Knockout , Netrin-1/genetics
3.
Biochem Biophys Res Commun ; 680: 184-193, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37742347

ABSTRACT

Cataract is lens opacity, which is a common blinding eye disease worldwide. Aquaporin 5 (AQP5) is expressed in the human and mouse lenses. This study aimed to investigate the underlying mechanisms of AQP5 in the senescence of lens epithelial cells (LECs). Primary LECs were isolated and cultured from Aqp5+/+ and Aqp5-/- mice. Western blot or immunofluorescence staining of p16, Ki67, MitoSOX, JC-1 and phalloidin was used in the experiments to evaluate the changes in the primary LECs. The primary Aqp5-/- LECs showed increased p16 expression and mitochondrial reactive oxygen species, decreased mitochondrial membrane potential and activity, and cytoskeletal disorders. When the cells were pretreated with Mito-TEMPO, the Aqp5-/- mice showed decreased p16 expression, reduced mitochondrial dysfunction and cytoskeletal disorders. Our results revealed that AQP5 deficiency promotes the senescence of primary LECs through mitochondrial dysfunction. This provides a new perspective for the treatment of cataracts by regulating AQP5 expression.

4.
Exp Eye Res ; 233: 109557, 2023 08.
Article in English | MEDLINE | ID: mdl-37380095

ABSTRACT

As a water channel protein, aquaporin 5 (AQP5) is essential for the maintenance of the normal physiological functions of ocular tissues. This review provides an overview of the expression and function of AQP5 in the eye and discusses their role in related eye diseases. Although AQP5 plays a vital role in ocular functions, such as maintaining corneal and lens transparency, regulating water movement, and maintaining homeostasis, some of its functions in ocular tissues are still unclear. Based on the key role of AQP5 in eye function, this review suggests that in the future, eye diseases may be treated by regulating the expression of aquaporin.


Subject(s)
Eye Diseases , Lens, Crystalline , Humans , Aquaporin 5 , Cornea/metabolism , Lens, Crystalline/metabolism , Eye Diseases/metabolism , Ocular Physiological Phenomena
5.
Invest Ophthalmol Vis Sci ; 64(1): 4, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36626177

ABSTRACT

Purpose: The pathogenesis of the lacrimal glands (LGs) is facilitated by inflammation mediated by the NACHT, LRR, and NLRP3 inflammasomes in dry eye disease. This research aimed to explore the protective effects of Aquaporin 5 (AQP5) on LGs by inhibiting reactive oxygen species (ROS) and the NLRP3 inflammasome. Methods: AQP5 knockout (AQP5-/-) mice were used to evaluate pathological changes in LGs. ROS generation was detected with a dichlorodihydro-fluorescein diacetate assay. Lipid metabolism was assessed by Oil Red O staining. The reversal of the mitochondrial membrane potential was detected using a JC-1 fluorescent probe kit. The effect of AQP5 on NLRP3/caspase-1/Gasdermin-D (GSDMD)-mediated pyroptosis was examined using pharmacological treatment of N-acetyl L-cysteine or MCC950. Results: AQP5 loss significantly increased ROS generation, lipid metabolism disorders, TUNEL-positive cells, and reversal of the mitochondrial membrane potential in the AQP5-/- LGs. NLRP3 upregulation, increased caspase-1 and GSDMD activity, and enhanced IL-1ß release were detected in the AQP5-/- mouse LGs and primary LG epithelial cells. MCC950 significantly suppressed NLRP3 inflammasome-related pyroptosis induced by AQP5 deficiency in LGs and primary LG epithelial cells. Furthermore, we discovered that prestimulating the AQP5-/- primary LG epithelial cells with N-acetyl L-cysteine decreased NLRP3 expression, caspase-1 and GSDMD activity levels, and IL-1ß release. Conclusions: Our results revealed that AQP5 loss promoted NLRP3 inflammasome activation through ROS generation. Inhibiting the ROS or NLRP3 inflammasome significantly alleviated the damage and pyroptosis of AQP5-deficient LG epithelial cells, which could provide new insights into dry eye disease.


Subject(s)
Dry Eye Syndromes , Lacrimal Apparatus , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Pyroptosis , Lacrimal Apparatus/metabolism , Cell Line , Caspase 1/metabolism , Acetylcysteine/pharmacology , Dry Eye Syndromes/metabolism
6.
FASEB J ; 37(2): e22776, 2023 02.
Article in English | MEDLINE | ID: mdl-36688817

ABSTRACT

AQP5 plays a crucial role in maintaining corneal transparency and the barrier function of the cornea. Here, we found that in the corneas of Aqp5-/- mice at older than 6 months, loss of AQP5 significantly increased corneal neovascularization, inflammatory cell infiltration, and corneal haze. The results of immunofluorescence staining showed that upregulation of K1, K10, and K14, and downregulation of K12 and Pax6 were detected in Aqp5-/- cornea and primary corneal epithelial cells. Loss of AQP5 aggravated wound-induced corneal neovascularization, inflammation, and haze. mRNA sequencing, western blotting, and qRT-PCR showed that Wnt2 and Wnt6 were significantly decreased in Aqp5-/- corneas and primary corneal epithelial cells, accompanied by decreased aggregation in the cytoplasm and nucleus of ß-catenin. IIIC3 significantly suppressed corneal neovascularization, inflammation, haze, and maintained corneal transparent epithelial in Aqp5-/- corneas. We also found that pre-stimulated Aqp5-/- primary corneal epithelial cells with IIIC3 caused the decreased expression of K1, K10, and K14, the increased expression of K12, Pax6, and increased aggregation in the cytoplasm and nucleus of ß-catenin. These findings revealed that AQP5 may regulate corneal epithelial homeostasis and function through the Wnt/ß-catenin signaling pathway. Together, we uncovered a possible role of AQP5 in determining corneal epithelial cell fate and providing a potential therapeutic target for corneal epithelial dysfunction.


Subject(s)
Corneal Neovascularization , Wnt Signaling Pathway , Mice , Animals , Aquaporin 5/genetics , Corneal Neovascularization/metabolism , beta Catenin/metabolism , Cornea/metabolism , Epithelial Cells/metabolism , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...