Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793349

ABSTRACT

Network microstructure titanium matrix composites (NMTMCs), featuring Ti6Al4V as the matrix and network-distributed TiB whiskers (TiBw) as reinforcement, exhibit remarkable potential for diverse applications due to their superior physical properties. Due to the difficulty in machining titanium matrix composites, electrical discharge machining (EDM) stands as one of the preferred machining techniques for NMTMCs. Nevertheless, the compromised surface quality and the recast layer significantly impact the performance of the workpiece machined by EDM. Therefore, for the purpose of enhancing the surface quality and restraining the defects of NMTMCs, this study conducted comparative EDM milling experiments between NMTMCs and Ti6Al4V to analyze the effects of discharge capacitance, charging current, and pulse interval on the surface roughness, recast layer thickness, recast layer uniformity, and surface microcrack density of both materials. The results indicated that machining energy significantly influences workpiece surface quality. Furthermore, comparative experiments exploring the influence of network reinforcement on EDM milling revealed that NMTMCs have a higher melting point, leading to an accumulation phenomenon in low-energy machining where the reinforcement could not be completely removed. The residual reinforcement in the recasting layer had an adsorption effect on molten metal affecting the thermal conductivity and uniformity within the recasting layer. Finally, specific guidelines are put forward for optimizing the material's surface roughness, recast layer thickness, and uniformity, along with minimizing microcrack density, which attain a processing effect that features a roughness of Ra 0.9 µm, an average recast layer thickness of 6 µm with a range of 8 µm, and a surface microcrack density of 0.08 µm-1.

2.
Mikrochim Acta ; 191(6): 330, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744738

ABSTRACT

In view of a large number of people infected with Helicobacter pylori (H. pylori) with great harm followed, there is an urgent need to develop a non-invasive, easy-to-operate, and rapid detection method, and to identify effective sterilization strategies. In this study, highly specific nanoprobes with nanozyme activity, Ag@Pt nanoparticles (NPs) with the antibody, were utilized as a novel lateral flow immunoassay (LFIA). The optical label (Ag@Pt NPs) was enhanced by the introduction of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) and compared with a gold nanoparticles (Au NPs) optical label. Under the optimal condition, Ag@Pt-LFIA and TMB-enhanced Ag@Pt-LFIA for H. pylori were successfully established, two of which were over twofold and 100-fold more sensitive than conventional visual Au NP-based LFIA, respectively. Furthermore, Ag@Pt NPs with the antibody irradiated with NIR laser (808 nm) at a power intensity of 550 mW/cm2 for 5 min exhibited a remarkable antibacterial effect. The nanoprobes could close to bacteria through effective interactions between antibodies and bacteria, thereby benefiting photothermal sterilization. Overall, Ag@Pt NPs provide promising applications in pathogen detection and therapeutic applications.


Subject(s)
Alloys , Helicobacter pylori , Metal Nanoparticles , Platinum , Silver , Helicobacter pylori/radiation effects , Helicobacter pylori/drug effects , Silver/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Alloys/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Immunoassay/methods , Benzidines/chemistry , Gold/chemistry , Humans , Sterilization/methods , Limit of Detection
3.
Metabolism ; 136: 155310, 2022 11.
Article in English | MEDLINE | ID: mdl-36063868

ABSTRACT

INTRODUCTION: Recurrent hypoglycemia (RH) impairs secretion of counterregulatory hormones. Whether and how RH affects responses within metabolically important peripheral organs to counterregulatory hormones are poorly understood. OBJECTIVE: To study the effects of RH on metabolic pathways associated with glucose counterregulation within liver, white adipose tissue and skeletal muscle. METHODS: Using a widely adopted rodent model of 3-day recurrent hypoglycemia, we first checked expression of counterregulatory hormone G-protein coupled receptors (GPCRs), their inhibitory regulators and downstream enzymes catalyzing glycogen metabolism, gluconeogenesis and lipolysis by qPCR and western blot. Then, we examined epinephrine-induced phosphorylation of PKA substrates to validate adrenergic sensitivity in each organ. Next, we measured hepatic and skeletal glycogen content, degree of breakdown by epinephrine and abundance of phosphorylated glycogen phosphorylase under hypoglycemia and that of phosphorylated glycogen synthase during recovery to evaluate glycogen turnover. Further, we performed pyruvate and lactate tolerance tests to assess gluconeogenesis. Additionally, we measured circulating FFA and glycerol to check lipolysis. The abovementioned studies were repeated in streptozotocin-induced diabetic rat model. Finally, we conducted epinephrine tolerance test to investigate systemic glycemic excursions to counterregulatory hormones. Saline-injected rats served as controls. RESULTS: RH increased counterregulatory hormone GPCR signaling in liver and epidydimal white adipose tissue (eWAT), but not in skeletal muscle. For glycogen metabolism, RH did not affect total content or epinephrine-stimulated breakdown in liver and skeletal muscle. Although RH decreased expression of phosphorylated glycogen synthase 2, it did not affect hepatic glycogen biosynthesis during recovery from hypoglycemia or after fasting-refeeding. For gluconeogenesis, RH upregulated fructose 1,6-bisphosphatase 1 and monocarboxylic acid transporter 1 that imports lactate as precursor, resulting in a lower blood lactate profile during hypoglycemia. In agreement, RH elevated fasting blood glucose and caused higher glycemic excursions during pyruvate tolerance test. For lipolysis, RH did not affect circulating levels of FFA and glycerol after overnight fasting or upon epinephrine stimulation. Interestingly, RH upregulated the trophic fatty acid transporter FATP1 and glucose transporter GLUT4 to increase lipogenesis in eWAT. These aforementioned changes of gluconeogenesis, lipolysis and lipogenesis were validated in streptozotocin-diabetic rats. Finally, RH increased insulin sensitivity to accelerate glucose disposal, which was attributable to upregulated visceral adipose GLUT4. CONCLUSIONS: RH caused metabolic adaptations related to counterregulation within peripheral organs. Specifically, adrenergic signaling was enhanced in liver and visceral fat, but not in skeletal muscle. Glycogen metabolism remained unchanged. Hepatic gluconeogenesis was augmented. Systemic lipolysis was unaffected, but visceral lipogenesis was enhanced. Insulin sensitivity was increased. These findings provided insights into mechanisms underlying clinical problems associated with intensive insulin therapy, such as high gluconeogenic flux and body weight gain.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemia , Insulin Resistance , Adrenergic Agents/adverse effects , Adrenergic Agents/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Epinephrine , Fatty Acids/metabolism , Fructose/pharmacology , Gluconeogenesis , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/pharmacology , Glycerol/metabolism , Glycogen/metabolism , Glycogen Synthase/metabolism , Hypoglycemia/metabolism , Insulin/metabolism , Lactates/adverse effects , Lactates/metabolism , Lipolysis , Liver/metabolism , Liver Glycogen/metabolism , Monocarboxylic Acid Transporters/adverse effects , Monocarboxylic Acid Transporters/metabolism , Pyruvates/metabolism , Rats , Streptozocin/adverse effects , Streptozocin/metabolism
4.
J Hazard Mater ; 435: 129082, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35650752

ABSTRACT

Multimodal lateral flow immunoassay (LFIA) has displayed its potential to improve practicability and elasticity of point-of-care testing. Herein, multifunctional core-shell-shell Au@Pt@Ag NPs loaded with dual-layer Raman reporter molecules of 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) with a characteristic combination of color-photothermal-Raman performance were constructed for colorimetric LFIA (CM-LFIA), photothermal LFIA (PT-LFIA) and surface-enhanced Raman scattering-based LFIA (SERS-LFIA), respectively. The highly specific nanoprobes, being obtained through the combination of the resulted dual-layer DTNB modified Au@Pt@Ag NPs with the antibody, were triumphantly utilized in exploring multimodal LFIA with one visual qualitative and two optional quantitative modes with excellent sensing sensitivity. Under optimal conditions, the limit of detection (LOD) for the model hazardous analyte dehydroepiandrosterone (DHEA) were 1.0 ng mL-1 for CM-LFIA, 0.42 ng mL-1 for PT-LFIA, and 0.013 ng mL-1 for SERS-LFIA, three of which were over 100-fold, 200-fold and 7 000-fold more sensitive than conventional visual AuNPs-based LFIA, respectively. In addition, the quantitative PT-LFIA and SERS-LFIA sensors worked well in spiked real samples with acceptable recoveries of 96.2 - 106.7% and 98.2 - 105.2%, respectively. This assay demonstrated that the developed multimodal LFIA had a great potential to be a powerful tool for accurate tracing hazardous analytes in complex samples.


Subject(s)
Gold , Metal Nanoparticles , Dithionitrobenzoic Acid , Immunoassay/methods , Spectrum Analysis, Raman/methods
5.
J Colloid Interface Sci ; 621: 489-498, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35483180

ABSTRACT

In view of the current public health hazards of food-borne pathogens, it is urgent to develop a rapid detection method with high sensitivity, good specificity and operational convenience, as well as to determine an effective sterilization strategy. Herein, versatile gold-ruthenium nanocomposites modified with antibody (Au@Ru-pAb Ncs) have been constructed for the sensitive detection of Salmonella typhimurium (S. typhimurium) via the lateral flow immunochromatographic assay (LFIA). Au@Ru-pAb Ncs based LFIA exhibited a wide detection range from 2.9 × 106 CFU/mL to 2.9 × 1011 CFU/mL with the limit of detection of 9.8 × 104 CFU/mL for S. typhimurium, and displayed excellent specificity. In addition, Au@Ru-pAb Ncs irradiated with 808 nm (500 mW/cm2) near-infrared light (NIR) had a significant antibacterial effect within only 5 min, attributed to its high photothermal conversion efficiency of 54.14%. Therefore, both sensitive detection of S. typhimurium and effective NIR-triggered photothermal sterilization were achieved by using versatile Au@Ru-pAb Ncs, showing great prospects in the field of pathogen detection and treatment.


Subject(s)
Nanocomposites , Salmonella typhimurium , Gold/chemistry , Infrared Rays , Nanocomposites/chemistry , Sterilization
6.
J Agric Food Chem ; 69(46): 13691-13699, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34783242

ABSTRACT

Currently, the infection with Helicobacter pylori affects about half of the world's population, and the most common therapy to treat H. pylori is the first line clarithromycin-based triple therapy or the quadruple therapy. However, drug resistance, eradication in a low level, high rate of reinfection, and gastrointestinal side effects among the causative organisms for H. pylori infection pose a critical challenge to the global health care community. Therefore, new approaches to treat H. pylori infections are urgently needed. Chicken egg yolk constituting a source of immunoglobulin Y (IgY) has attracted noticeable attention for its advantages of cost-effective extraction, minimization of animal harm and suffering, and induction of no specific resistance and is, therefore, being regarded as an alternative therapy for H. pylori infection. This review is intended to summarize various H. pylori antigens for IgY preparation in terms of their application, mechanism, and limitations.


Subject(s)
Helicobacter pylori , Animals , Antibodies , Egg Yolk , Immunoglobulins , Urease
SELECTION OF CITATIONS
SEARCH DETAIL
...