Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Cybern ; 53(2): 1324-1334, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34860660

ABSTRACT

Applying the chaos theory for secure digital communications is promising and it is well acknowledged that in such applications the underlying chaotic systems should be carefully chosen. However, the requirements imposed on the chaotic systems are usually heuristic, without theoretic guarantee for the resultant communication scheme. Among all the primitives for secure communications, it is well accepted that (pseudo) random numbers are most essential. Taking the well-studied 2-D coupled map lattice (2D CML) as an example, this article performs a theoretical study toward pseudorandom number generation with the 2D CML. In so doing, an analytical expression of the Lyapunov exponent (LE) spectrum of the 2D CML is first derived. Using the LEs, one can configure system parameters to ensure the 2D CML only exhibits complex dynamic behavior, and then collect pseudorandom numbers from the system orbits. Moreover, based on the observation that least significant bit distributes more evenly in the (pseudo) random distribution, an extraction algorithm E is developed with the property that when applied to the orbits of the 2D CML, it can squeeze uniform bits. In implementation, if fixed-point arithmetic is used in binary format with a precision of z bits after the radix point, E can ensure that the deviation of the squeezed bits is bounded by 2-z . Further simulation results demonstrate that the new method not only guides the 2D CML model to exhibit complex dynamic behavior but also generates uniformly distributed independent bits with good efficiency. In particular, the squeezed pseudorandom bits can pass both NIST 800-22 and TestU01 test suites in various settings. This study thereby provides a theoretical basis for effectively applying the 2D CML to secure communications.

2.
IEEE J Biomed Health Inform ; 26(12): 5783-5792, 2022 12.
Article in English | MEDLINE | ID: mdl-36099222

ABSTRACT

Recent years have witnessed an increasing popularity of wireless body area network (WBAN), with which continuous collection of physiological signals can be conveniently performed for healthcare monitoring. Energy consumption is a critical issue because it directly affects the duration of the equipped sensors. In this article, we propose a low-cost and confidential electrocardiogram (ECG) acquisition approach for WBAN. The compressed sensing (CS) is employed for low-cost signal acquisition, and its cryptographic features are exploited for promoting the framework's confidentiality. In particular, the RIPless measurement matrix is used to give CS the resistance against plaintext attack, while the first-order Σ∆ quantizer is employed to embed the cryptographic diffusion feature into the whole system. Two chaotic systems are employed for generating the required secret elements for the acquisition and encryption. Experiment results well demonstrate the signal reconstruction and security performance of the proposed framework.


Subject(s)
Algorithms , Confidentiality , Humans , Electrocardiography/methods , Wireless Technology
3.
Bioinformatics ; 35(22): 4560-4567, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30994891

ABSTRACT

MOTIVATION: Detection of maximal exact matches (MEMs) between two long sequences is a fundamental problem in pairwise reference-query genome comparisons. To efficiently compare larger and larger genomes, reducing the number of indexed k-mers as well as the number of query k-mers has been adopted as a mainstream approach which saves the computational resources by avoiding a significant number of unnecessary matches. RESULTS: Under this framework, we proposed a new method to detect all MEMs from a pair of genomes. The method first performs a fixed sampling of k-mers on the query sequence, and adds these selected k-mers to a Bloom filter. Then all the k-mers of the reference sequence are tested by the Bloom filter. If a k-mer passes the test, it is inserted into a hash table for indexing. Compared with the existing methods, much less number of query k-mers are generated and much less k-mers are inserted into the index to avoid unnecessary matches, leading to an efficient matching process and memory usage savings. Experiments on large genomes demonstrate that our method is at least 1.8 times faster than the best of the existing algorithms. This performance is mainly attributed to the key novelty of our method that the fixed k-mer sampling must be conducted on the query sequence and the index k-mers are filtered from the reference sequence via a Bloom filter. AVAILABILITY AND IMPLEMENTATION: https://github.com/yuansliu/bfMEM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Software , Genome , Sequence Analysis, DNA
4.
IEEE Trans Cybern ; 48(4): 1163-1175, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28368843

ABSTRACT

The need for fast and strong image cryptosystems motivates researchers to develop new techniques to apply traditional cryptographic primitives in order to exploit the intrinsic features of digital images. One of the most popular and mature technique is the use of complex dynamic phenomena, including chaotic orbits and quantum walks, to generate the required key stream. In this paper, under the assumption of plaintext attacks we investigate the security of a classic diffusion mechanism (and of its variants) used as the core cryptographic primitive in some image cryptosystems based on the aforementioned complex dynamic phenomena. We have theoretically found that regardless of the key schedule process, the data complexity for recovering each element of the equivalent secret key from these diffusion mechanisms is only (1). The proposed analysis is validated by means of numerical examples. Some additional cryptographic applications of this paper are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...