Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
J Mater Chem B ; 12(26): 6442-6451, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38860876

ABSTRACT

Self-assembled DNA nanostructures hold great promise in biosensing, drug delivery and nanomedicine. Nevertheless, challenges like instability and inefficiency in cellular uptake of DNA nanostructures under physiological conditions limit their practical use. To tackle these obstacles, this study proposes a novel approach that integrates the cationic polymer polyethyleneimine (PEI) with DNA self-assembly. The hypothesis is that the positively charged linear PEI can facilitate the self-assembly of DNA nanostructures, safeguard them against harsh conditions and impart them with the cellular penetration characteristic of PEI. As a demonstration, a DNA nanotube (PNT) was successfully synthesized through PEI mediation, and it exhibited significantly enhanced stability and cellular uptake efficiency compared to conventional Mg2+-assembled DNA nanotubes. The internalization mechanism was further found to be both clathrin-mediated and caveolin-mediated endocytosis, influenced by both PEI and DNA. To showcase the applicability of this hybrid nanostructure for biomedical settings, the KRAS siRNA-loaded PNT was efficiently delivered into lung adenocarcinoma cells, leading to excellent anticancer effects in vitro. These findings suggest that the PEI-mediated DNA assembly could become a valuable tool for future biomedical applications.


Subject(s)
Adenocarcinoma of Lung , DNA , Lung Neoplasms , Nanotubes , Polyethyleneimine , Proto-Oncogene Proteins p21(ras) , RNA, Small Interfering , Polyethyleneimine/chemistry , Humans , Nanotubes/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , DNA/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Particle Size , Cell Proliferation/drug effects , Drug Carriers/chemistry
2.
Inorg Chem ; 61(30): 11866-11878, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35857312

ABSTRACT

Two isomorphic lanthanide compounds {[Ln(ddpp)(H2O)]·CH3CN}n (Ln = Eu and Gd, H4ddpp = 2,5-di(2',4'-dicarboxylphenyl)pyridine) were synthesized. Complex 1-Eu displays ultrahigh acid-base stability and thermal stability. Furthermore, luminescence measurements revealed that 1-Eu could detect quinolone antibiotics with an ultralow limit of detection in aqueous solution. The ratiometric probe properties for sensing antibiotics could be attributed to the incompletely sensitized Eu3+ ion of the ligand. Remarkably, it is interesting that 1-Gd exhibits excellent tetracycline degradation properties under visible light. Ultraviolet-visible diffuse reflectance spectroscopy and valence band X-ray photoelectron spectroscopy were carried out to investigate the photodegradation mechanisms. Moreover, a rational explanation for the fluorescent probe and photocatalysis behavior of these two complexes was also discussed with the assistance of density functional theory calculations.


Subject(s)
Lanthanoid Series Elements , Metal-Organic Frameworks , Anti-Bacterial Agents , Lanthanoid Series Elements/chemistry , Ligands , Luminescent Measurements/methods
3.
Bioorg Chem ; 115: 105270, 2021 10.
Article in English | MEDLINE | ID: mdl-34467939

ABSTRACT

A series of 1,2,4-triazole-norfloxacin hybrids was designed, synthesized, and evaluated for in vitro antibacterial activity against common pathogens. All the newly synthesized compounds were characterized by Fourier-transform infrared spectrophotometry, proton and carbon nuclear magnetic resonance, and electrospray ionization-mass spectrometry. Representative compounds from each step of the synthesis were further characterized by X-ray crystallography. Many of the compounds synthesized exhibited antibacterial activity superior to that of norfloxacin toward both, gram-positive and gram-negative bacteria. The toxicity of the 1,2,4-triazole-norfloxacin hybrids toward bacterial cells was 32-512 times higher than that toward mouse fibroblast cells. Moreover, hemolysis was not observed at concentrations of 64 µg/mL, suggesting good biocompatibility. Molecular docking showed a least binding energy of -9.4 to -9.7 kcal/mol, and all compounds were predicted to show remarkable affinity for the bacterial topoisomerase IV.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dose-Response Relationship, Drug , Molecular Docking Simulation , Norfloxacin/pharmacology , Triazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Norfloxacin/chemical synthesis , Norfloxacin/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
4.
J Inorg Biochem ; 213: 111248, 2020 12.
Article in English | MEDLINE | ID: mdl-33011623

ABSTRACT

Three aroylhydrazone ligands ((Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-2-hydroxybenzohydrazide, HL1; (Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-3-hydroxybenzohydrazide, HL2; and (Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-4-hydroxybenzohydrazide, HL3) and their complexes with nickel (Ni(L1)2, 1; Ni(L2)2, 2; Ni(L3)2∙DMF, 3) were synthesized and characterized by ESI-MS, NMR, IR, UV-vis and elemental analysis techniques. The molecular structure of ligand (HL2) and complexes 1-3 was confirmed by single crystal X-ray crystallography. The single crystal X-ray structure of complexes 1-3 showed a distorted square planar geometry around the metal center, and the ligands adopt a bidentate chelating mode. The interaction of calf thymus (ctDNA) with nickel(II) complexes was explored using absorption, emission spectrum, viscosity, and circular dichroism methods. These complexes exhibited moderate affinity for ctDNA through groove binding modes. The most efficient DNA binder was complex 2. The interaction of the complexes with DNA has also been supported by molecular docking study and molecular dynamics simulation. An in vitro cytotoxicity study of the complexes found low activity against human cervical (Hela) and breast (MCF-7) cancer cell lines, with the best results for complex 2, where IC50 values are 86 µM and 92 µM respectively.


Subject(s)
Coordination Complexes/chemistry , Hydrazones/chemistry , Nickel/chemistry , Animals , Cattle , Cell Line, Tumor , DNA/chemistry , Humans , Molecular Structure , Spectrum Analysis/methods
5.
J Inorg Biochem ; 203: 110919, 2020 02.
Article in English | MEDLINE | ID: mdl-31783217

ABSTRACT

In this work, three aroylhydrazone ligands ((E)-2-hydroxy-N'-(1-(pyrazin-2-yl)ethylidene)benzohydrazide, HL1; (E)-3-hydroxy-N'-(1-(pyrazin-2-yl)ethylidene)benzohydrazide, HL2; and (E)-4-hydroxy-N'-(1-(pyrazin-2-yl)ethylidene)benzohydrazide, HL3) and their complexes with nickel (Ni(L1)2, NiL1; Ni(L2)2∙2DMF, NiL2; Ni(L3)2∙2DMF, NiL3) were prepared. The single crystal X-ray structures analysis of three compounds showed that they were neutral. The ligand adopts tridentate chelating mode. The nickel ion is six-coordinate with two O atoms and four N atoms from two ligands, and forms an octahedral arrangement. The investigation of DNA binding ability by ultraviolet and fluorescence titrations showed that NiL2 and NiL3 exhibit moderate binding affinity toward calf Thymus DNA. Spectroscopy, molecular docking, and molecular dynamics simulation indicated that NiL2 and NiL3 bind at the minor groove of DNA through intercalation.


Subject(s)
Coordination Complexes/chemical synthesis , Hydrazones/chemistry , Intercalating Agents/chemical synthesis , Nickel/chemistry , Organometallic Compounds/chemical synthesis , DNA/chemistry
6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(5): 1371-5, 2010 May.
Article in Chinese | MEDLINE | ID: mdl-20672636

ABSTRACT

Color gamut as a significant performance index for display system describes the color reproduction ability IN real scenes. Liquid crystal display (LCD) is the most popular technology in flat panel display. However, conventional cold cathode fluorescent lamp (CCFL) backlight of LCD can not behave high color gamut compared with cathode ray tube (CRT). The common used method of color gamut measuring for LCD system is introduced at the beginning. According to the inner structure and display principle of LCD system, there are three major factors deciding LCD's color gamut: spectral properties of backlight, transmittance properties of color filters and performance of liquid crystal panel. Instead of conventional backlight CCFL, RGB-LED backlight is used for improving color reproduction of LCD display system. Due to the imperfect match between RGB-LED' s spectra and color filter's transmittance, the color filter would reduce the color gamut of LCD system more or less. Therefore, LCD system based on LED backlight with area-control technique is introduced which modifies backlight control signal according to the input signal After analyzing and calculating the spectra of LED backlight which passes through the color filters using method of colorimetry, the area sizes of color gamut triangles of RGB-LED backlight with area-control and RGB-LED backlight without area-control LCD systems are compared and the relationship between color gamut and varying contrast of liquid crystal panel is analyzed. It is indicated that LED backlight with area-control technique can avoid color saturation dropping and have little effects on the contrast variation of liquid crystal panel. In other words, LED backlight with area-control technique relaxes the requirements of both color filter performance and liquid crystal panel. Thus, it is of importance to improve the color gamut of the current LCD system with area-control LED backlight.

SELECTION OF CITATIONS
SEARCH DETAIL
...