Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 73(18): 6133-6149, 2022 10 18.
Article in English | MEDLINE | ID: mdl-35662326

ABSTRACT

Heading date, panicle architecture, and grain size are key traits that affect the yield of rice (Oryza sativa). Here, we identified a new gene, OsGATA6, whose product regulates heading date. Overexpression of OsGATA6 resulted in delayed heading, increased grain number, and decreased grain size. Knockdown lines generated by artificial microRNA (amiRNA) and CRISPR genome-edited lines of OsGATA6 both showed earlier heading, decreased grain number, and increased grain size. These results suggested that OsGATA6 negatively regulates heading date, positively regulates panicle development, and affects grain size. OsGATA6 was found to be constitutively expressed in rice, and strongly expressed in young leaves and panicles. In situ hybridization analyses showed that OsGATA6 was specifically localized in superficial cells of the panicle primordium. Overexpression lines show decreased expression of RFT1 and Hd3a, which promote heading. OsMFT1, which delays heading date and increases grain number, was down-regulated in amiRNA lines. Further analyses showed that OsGATA6 could bind to the promoter of OsMFT1 and induce its expression, thereby regulating heading date and panicle development. Overexpression of OsGATA6 in Arabidopsis resulted in repressed expression of AtFT and late flowering, suggesting that its function is similar. Taken together, we have identified a new GATA regulator that influences rice heading date and grain number, which potentially increases rice yield.


Subject(s)
MicroRNAs , Oryza , Oryza/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Langmuir ; 35(4): 894-900, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30607955

ABSTRACT

In this work, interfacial reaction kinetics between α-[3-(2,3-epoxypropoxy)propyl]-ω-butyl-polydimethylsiloxane emulsion droplets with different sizes and gelatin was studied. The results of amino conversion rate determination show that the reaction proceeded in two steps. Fluorescence spectra analysis indicates that step 1 (0-2 h) should be the adsorption of gelatin on droplet surface. In step 2 (2-13 h), amino conversion rate increased rapidly. The reaction rate in step 2 ( k2) was obtained by using the 2nd-order approach to model the grafting reaction kinetics. The quantitative relationships among amino conversion rate, droplet size, the concentration of surfactant, reaction temperature, and time were described by linear regression models in given ranges of conditions in step 2. Thermodynamic analysis indicates that the interfacial reaction is an endothermic reaction. After 13 h, the reaction was almost stopped.

SELECTION OF CITATIONS
SEARCH DETAIL
...