Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics ; 19(1): 2299044, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38154055

ABSTRACT

Early detection of hepatocellular carcinoma (HCC) can greatly improve the survival rate of patients. We aimed to develop a novel marker panel based on cell-free DNA (cfDNA) methylation for the detection of HCC. The differentially methylated CpG sites (DMCs) specific for HCC blood diagnosis were selected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, then validated by the whole genome bisulphite sequencing (WGBS) of 12 paired HCC and paracancerous tissues. The clinical performance of the panel was evaluated using tissue samples [32 HCC, chronic liver disease (CLD), and healthy individuals] and plasma cohorts (173 HCC, 199 CLD, and 98 healthy individuals). The combination of G protein subunit beta 4 (GNB4) and Riplet had the optimal area under the curve (AUC) in seven candidates through TCGA, GEO, and WGBS analyses. In tissue validation, the GNB4 and Riplet showed an AUC of 100% with a sensitivity and specificity of 100% for detecting any-stage HCC. In plasma, it demonstrated a high sensitivity of 84.39% at 91.92% specificity, with an AUC of 92.51% for detecting any-stage HCC. The dual-marker panel had a higher sensitivity of 78.26% for stage I HCC than alpha-fetoprotein (AFP) of 47.83%, and a high sensitivity of 70.27% for detecting a single tumour (size ≤3 cm). In conclusion, we developed a novel dual-marker panel that demonstrates high accuracy in detecting HCC, surpassing the performance of AFP testing.


Subject(s)
Carcinoma, Hepatocellular , GTP-Binding Protein beta Subunits , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , alpha-Fetoproteins/analysis , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Biomarkers, Tumor/metabolism , DNA Methylation , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism
2.
Front Oncol ; 12: 714663, 2022.
Article in English | MEDLINE | ID: mdl-35574348

ABSTRACT

We aimed to estimate the diagnostic value of DNA methylation levels in cytological samples of endometrial cancer (EC) and atypical hyperplasia (AH). Two hypermethylated genes, namely, cysteine dioxygenase type 1 (CDO1) and zinc finger protein 454 (ZNF454), in patients with EC were identified from The Cancer Genome Atlas database. In 103 endometrial histological specimens (the training set), the methylation levels of candidate genes were verified by quantitative methylation-specific polymerase chain reaction (qMSP). The methylation levels of another 120 cytological specimens (the testing set) were evaluated. Sensitivity (Se), specificity (Sp), accuracy, and area under the curve (AUC) were determined, with diagnosis verified by histopathological results. CDO1 and ZNF454 verified hypermethylation in histological specimens of patients with EC and AH compared with those with benign and normal endometrium (P < 0.001). In cytological specimens, hypermethylated CDO1 showed 86.36% Se and 90.79% Sp with the cutoff value of 6.0 to distinguish between malignant and benign groups; ZNF454 showed 79.55% Se and 93.42% Sp with the cutoff value of 7.1. When the two genes were combined, Se increased to 90.91% and Sp was 86.84%. AUC reached 0.931 (95% CI: 0.885-0.976). The diagnostic accuracy with cytology had no significant difference with endometrial tissue (P = 0.847 for CDO1, P = 0.108 for ZNF454, and P = 0.665 for their combination). Hypermethylated CDO1 and ZNF454 in endometrial cytology showed high Se, Sp, and AUC to detect EC and AH. Methylation analysis of endometrial cytology is promising biomarker for the screening of EC and AH.

3.
Front Mol Biosci ; 8: 706754, 2021.
Article in English | MEDLINE | ID: mdl-35004840

ABSTRACT

Background: SDC2 methylation is a feasible biomarker for colorectal cancer detection. Its specificity for colorectal cancer is higher than 90%, but the sensitivity is normally lower than 90%. This study aims to improve the sensitivity of SDC2 detection through finding a high positive target from the false-negative samples of SDC2 detection based on analysis of the bowel subsite difference in methylation. Methods: Hypermethylated TFPI2 was identified in SDC2 hypomethylated colorectal cancer samples retrieved from TCGA database with the methylation level lower than 0.2. The methylation-specific PCR assay was developed and then evaluated using tissue samples (184 cancer and 54 healthy control samples) and stool samples (289 cancer, 190 adenoma, and 217 healthy control samples). Results: TFPI2 was hypermethylated in most SDC2 hypomethylated colorectal cancer samples. When the SDC2/TFPI2-combined PCR assay was performed in stool specimens, the AUC value of cancer vs. control was 0.98, with the specificity of 96.40% and sensitivity of 96.60%, and the AUC value of adenoma vs. control was 0.87, with the specificity of 95.70% and the sensitivity of 80.00%. The improvement in sensitivity was the most momentous in the left colon. As the detection index, the Ct value was better in improving the sensitivity of detection than the methylation level based on the 2-ΔΔCt value. Conclusion: TFPI2 can improve the sensitivity of SDC2 methylation-specific detection of colorectal tumorous lesions while maintaining high specificity, in particular reducing the missed detection of left colon cancer and adenoma.

4.
J Glob Health ; 10(1): 011002, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32257174

ABSTRACT

BACKGROUND: Recent outbreak of 2019-nCoV in Wuhan raised serious public health concerns. By February 15, 2020 in Wuhan, the total number of confirmed infection cases has reached 37 914, and the number of deaths has reached 1123, accounting for 56.9% of the total confirmed cases and 73.7% of the total deaths in China. People are eager to know when the epidemic will be completely controlled and when people's work and life will be on the right track. METHOD: In this study we analyzed the epidemic dynamics and trend of 2019-nCoV in Wuhan by using the data after the closure of Wuhan city till February 12, 2020 based on the SEIR modeling method. RESULTS: The optimal parameters were estimated as R0 = 1.44 (interquartile range: 1.40-1.47), TI = 14 (interquartile range = 14-14) and TE = 3.0 (interquartile range = 2.8-3.1). Based on these parameters, the number of infected individuals in Wuhan city may reach the peak around February 19 at about 47 000 people. Once entering March, the epidemic would gradually decline, and end around the late March. It is worth noting that the above prediction is based on the assumption that the number of susceptible population N = 200 000 will not increase. If the epidemic situation is not properly controlled, the peak of infected number can be further increased and the peak time will be a little postponed. It was expected that the epidemic would subside in early March, and disappear gradually towards the late March. CONCLUSIONS: The epidemic situation of 2019-nCoV in Wuhan was effectively controlled after the closure of the city, and the disease transmission index also decreased significantly. It is expected that the peak of epidemic situation would be reached in late February and end in March.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus , Disease Outbreaks/prevention & control , Pneumonia, Viral/epidemiology , Betacoronavirus , COVID-19 , China/epidemiology , Coronavirus/isolation & purification , Coronavirus/pathogenicity , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Epidemics , Epidemiological Monitoring , Humans , Models, Statistical , Mortality , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology
5.
Virus Genes ; 50(3): 365-74, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25724176

ABSTRACT

The first Enterovirus 71 (EV71) strain isolated in 1969 was classified as genotype A. It is interesting that the genotype A disappeared nearly 40 years until its re-emergence in mainland China in 2008-2010. Few studies on genetic characterization of the re-emerged genotype A viruses have been reported. In this study, a series of analyses were performed on molecular epidemiology and genome recombination of genotype A viruses in China. Phylogenetic analysis indicated that except for 17 reported genotype A strains and 3 orphan strains (C0, C3 and B5), almost all EV71 strains in mainland China were belonging to subgenotype C4 during 1987-2011. The subgenotype C4 was further divided into 3 clades C4a1, C4a2, and C4b. The genotype A viruses co-circulated with the predominant clade C4a2 and the re-emerged clade C4b both in eastern and central China in 2008-2009. Moreover, comprehensive recombination analysis showed that the genotype A viruses were "triple-recombinant" by combination of intratypic and intertypic recombination. Intertypic recombination between the oldest C4b strain (SHZH98) and Coxsackievirus A5 (CVA5) and intratypic recombination between the SHZH98 and C1 strains both with one junction in 5'-UTR were observed for some specific C4a2 strains and the re-emerged C4b strain, respectively. And intratypic recombination between the re-emerged C4b strain and the specific C4a2 strains with one junction in 5'-UTR was observed for the Chinese genotype A viruses. Taken together, these results provided potential explanations for the genesis of Chinese genotype A viruses which were significant for preventing and controlling outbreaks.


Subject(s)
Enterovirus A, Human/classification , Enterovirus A, Human/genetics , Genetic Variation , Genotype , Recombination, Genetic , China/epidemiology , Cluster Analysis , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Evolution, Molecular , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology
6.
Virus Genes ; 49(3): 373-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25212431

ABSTRACT

Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, has broken out several times and was accompanied by neurological disease. microRNAs, a class of small non-coding RNAs that are approximately 20 nucleotides long, play important roles in the regulation of various biological processes, including antiviral defense. However, the roles of miRNAs in EV71 replication and pathogenesis are not well understood. In this study, we found that the expression of miR-27a was significantly decreased in EV71-infected cells. Interestingly, the over-expression of miR-27a could inhibit EV71 replication, as measured by virus titration, qPCR, and Western blotting. We identified EGFR mRNA is a bona fide target of miR-27a by computational analysis and luciferase reporter assays. Furthermore, miR-27a could decrease EGFR expression, as measured by qPCR and Western blotting. Moreover, the inhibition of EGFR expression by miR-27a decreased the phosphorylation of Akt and ERK, which facilitate EV71 replication. These results suggest that miR-27a may have antiviral activity against EV71 by inhibiting EGFR.


Subject(s)
Enterovirus A, Human/immunology , Enterovirus A, Human/physiology , ErbB Receptors/antagonists & inhibitors , Host-Pathogen Interactions , MicroRNAs/metabolism , Virus Replication , Cell Line , ErbB Receptors/biosynthesis , ErbB Receptors/genetics , Extracellular Signal-Regulated MAP Kinases , Gene Expression Profiling , Humans , MAP Kinase Signaling System , Oncogene Protein v-akt , Phosphorylation , Protein Processing, Post-Translational
7.
Virus Genes ; 48(2): 260-72, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24442718

ABSTRACT

Enterovirus 71 (EV71) is a neurotropic virus that causes various clinical manifestations in young children, ranging from asymptomatic to fatal. Different pathotypes of EV71 notably differ in virulence. Several virulence determinants of EV71 have been predicted. However, these reported virulence determinants could not be used to identify the EV71 strains of subgenotype C4, which mainly circulate in China. In this study, VP1 sequences of 37 EV71 strains from severe cases (SC-EV71) and 192 EV71 strains from mild cases (MC-EV71) in mainland China were analyzed to determine the potential virulence determinants in the capsid protein VP1 of EV71. Although most SC-EV71 strains belonged to subgenotype C4a, no specific genetic lineages in C4a were correlated with EV71 virulence. Interestingly, amino acid substitutions at nine positions (H22Q, P27S, N31S/D, E98K, E145G/Q, D164E, T240A/S, V249I, and A289T) were detected by aligning the VP1 sequences of the SC-EV71 and MC-EV71 strains. Moreover, both the constituent ratios of the conservative or mutated residues in the MC-EV71 and SC-EV71 strains and the changes in the VP1 3D structure resulting from these mutations confirmed that the conservative residues (22H, 249V, and 289A) and the mutated residues (27S, 31S/D, 98K, 145G/Q, 164E, and 240A/S) might be potential virulence determinants in VP1 of EV71. Furthermore, these results led to the hypothesis that VP1 acts as a sandwich switch for viral particle stabilization and cellular receptors attachment, and specific mutations in this protein can convert mild cases into severe cases. These findings highlight new opportunities for diagnostic and therapeutic interventions.


Subject(s)
Capsid/physiology , Enterovirus/pathogenicity , Viral Proteins/physiology , Virulence , China , Enterovirus/classification , Humans , Phylogeny
8.
Biochem Biophys Res Commun ; 441(4): 856-61, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-24211204

ABSTRACT

Coxsackievirus A16 (CA16) infection, which is responsible for hand, foot and mouth disease (HFMD), has become a common health problem in Asia due to the prevalence of the virus. Thus, it is important to understand the pathogenesis of CA16 infection. Viruses that induce endoplasmic reticulum (ER) stress are confronted with the unfolded protein response (UPR), which may lead to apoptotic cell death and influence viral replication. In this study, we found that CA16 infection could induce apoptosis and ER stress in RD cells. Interestingly, apoptosis via the activation of caspase-3, -8 and -9 in the extrinsic or intrinsic apoptotic pathways in RD cells was inhibited by 4-phenyl butyric acid (4PBA), a chemical chaperone that reduces ER stress. These results suggest that CA16 infection leads to ER stress, which in turn results in prolonged ER stress-induced apoptosis. This study provides a new basis for understanding CA16 infection and host responses.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Enterovirus , Hand, Foot and Mouth Disease/pathology , Hand, Foot and Mouth Disease/virology , Cell Line, Tumor , Humans
9.
Int J Mol Med ; 31(6): 1463-70, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23563695

ABSTRACT

Astragalus polysaccharide (APS) has been reported to increase insulin sensitization and to ameliorate diabetes in animal models, and studies have demonstrated that this effect may be correlated with its anti-inflammatory roles in vivo and in vitro. However, the potential pharmacological mechanisms of APS in anti-inflammatory regulation are still poorly understood. Herein, RAW264.7 cells treated with APS showed anti-inflammatory effects. Interleukin (IL)-10 protein levels and expression of most of the anti-inflammatory genes, including IL-10, macrophage mannose receptor (MMR), arginase, Dectin-1, YM-1 and YM-2, were significantly increased after treatment with APS for 24 h. Furthermore, to determine whether APS plays a potential role in RAW264.7 cell inflammation, we pretreated RAW264.7 cells with APS in the presence of palmitate. The results showed that APS markedly recovered the impairment of AMPK activity induced by palmitate. Furthermore, APS induced IL-10 protein production and anti-inflammatory gene expression of IL-10, MMR, Dectin-1, arginase, YM-1 and YM-2. Additionally, APS inhibited IL-1ß protein production and expression of most of the pro-inflammatory genes, such as IL-1ß, iNOS, MCP-1, IL-6 and CD11c but not tumor necrosis factor (TNF)-α. Notably, the effect of APS on inflammatory genes, except for TNF-α, was abrogated when AMPK activity was inhibited using a DN-AMPK plasmid. These results suggest that APS effectively ameliorates palmitate-induced pro-inflammatory responses through AMPK activity.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Astragalus Plant/chemistry , Polysaccharides/pharmacology , Animals , Cell Line , Cytokines/genetics , Cytokines/metabolism , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Inflammation/genetics , Inflammation/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Palmitates/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...