Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Research (Wash D C) ; 6: 0073, 2023.
Article in English | MEDLINE | ID: mdl-36930756

ABSTRACT

Semiconductor quantum dots have been emerging as one of the most ideal materials for artificial photosynthesis. Here, we report the assembled ZnS-CdS hybrid heterostructure for efficient coupling cooperative redox catalysis toward the oxidation of 1-phenylethanol to acetophenone/2,3-diphenyl-2,3-butanediol (pinacol) integrated with the reduction of protons to H2. The strong interaction and typical type-I band-position alignment between CdS quantum dots and ZnS quantum dots result in efficient separation and transfer of electron-hole pairs, thus distinctly enhancing the coupled photocatalyzed-redox activity and stability. The optimal ZnS-CdS hybrid also delivers a superior performance for various aromatic alcohol coupling photoredox reaction, and the ratio of electrons and holes consumed in such redox reaction is close to 1.0, indicating a high atom economy of cooperative coupling catalysis. In addition, by recycling the scattered light in the near field of a SiO2 sphere, the SiO2-supported ZnS-CdS (denoted as ZnS-CdS/SiO2) catalyst can further achieve a 3.5-fold higher yield than ZnS-CdS hybrid. Mechanistic research clarifies that the oxidation of 1-phenylethanol proceeds through the pivotal radical intermediates of •C(CH3)(OH)Ph. This work is expected to promote the rational design of semiconductor quantum dots-based heterostructured catalysts for coupling photoredox catalysis in organic synthesis and clean fuels production.

2.
ACS Appl Mater Interfaces ; 7(49): 27351-6, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26605759

ABSTRACT

Connections between metals and heterogeneous solid state materials form buried interfaces. These ubiquitous structures play an essential role in determining the performances of many nano- and microdevices. However, the information about the chemistry, structure, and properties of these real interfaces is intrinsically difficult to extract by traditional techniques. Therefore, approaches to efficiently discovering metalized interfaces are in high demand. Here, we demonstrate the transformation of nanoscale metal/oxide interface problems into surface problems through a novel metal-hydrogenation detaching method. We applied this technique to study the thickness dependence in Pb(Zr,Ti)O3 (PZT) ferroelectric thin films, a long-standing interface problem in a model metal/insulator device, and this allowed comprehensive surface analytical techniques to be adapted. A nonstoichiometric interfacial layer of 4.1 nm thick with low mass density, low permittivity, and weak ferroelectricity was quantified at the Pt/PZT interface and attributed to the preferential diffusions among the compositional elements. Targeted interface engineering by Pb rebalance led to a substantial recovery of ferroelectric properties. Our results therefore pave the way to a better understanding of metallized interface in ferroelectric and dielectric nanodevices. We hope that more useful information about metalized interfaces of other solid materials could, analogously, be accessed by surface analytical techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...