Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
ACS Nano ; 18(17): 11058-11069, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38630984

ABSTRACT

Perioperative neurocognitive disorder (PND) is a common complication in surgical patients. While many interventions to prevent PND have been studied, the availability of treatment methods is limited. Thus, it is crucial to delve into the mechanisms of PND, pinpoint therapeutic targets, and develop effective treatment approaches. In this study, reduced dorsal tenia tecta (DTT) neuronal activity was found to be associated with tibial fracture surgery-induced PND, indicating that a neuronal excitation-inhibition (E-I) imbalance could contribute to PND. Optogenetics in the DTT brain region was conducted using upconversion nanoparticles (UCNPs) with the ability to convert 808 nm near-infrared light to visible wavelengths, which triggered the activation of excitatory neurons with minimal damage in the DTT brain region, thus improving cognitive impairment symptoms in the PND model. Moreover, this noninvasive intervention to modulate E-I imbalance showed a positive influence on mouse behavior in the Morris water maze test, which demonstrates that UCNP-mediated optogenetics is a promising tool for the treatment of neurological imbalance disorders.


Subject(s)
Nanoparticles , Optogenetics , Animals , Optogenetics/methods , Mice , Nanoparticles/chemistry , Male , Maze Learning , Postoperative Cognitive Complications/etiology , Mice, Inbred C57BL , Neurons , Tibial Fractures/surgery , Infrared Rays
2.
ACS Appl Mater Interfaces ; 16(8): 10211-10217, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38369818

ABSTRACT

This work reports a strategy by enhancing conjugation effect and synthesizes a symmetrical and planar compound, 1,2-bis (4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazol-2-yl)diazene (NL24). The incorporation of azo and 1,2,3-triazole moieties manifests a synergistic effect, amplifying the conjugation effect of the azo bridge and thereby elevating the stability of NL24 (Td: 263 °C, IS: 7 J). Notably, NL24, possessing a structural configuration comprising four tetrazoles harboring a total of 24 nitrogen atoms, exhibits excellent detonation performances (ΔHf: 6.06 kJ g-1, VD: 9002 m s-1). This strategy achieves the balance of energy and stability of polycyclic tetrazoles and provides a direction for high-performance energetic materials.

3.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38366198

ABSTRACT

Oxygen is one of the determinants of root microbiome formation. However, whether plants regulate rhizosphere oxygen levels to affect microbiota composition and the underlying molecular mechanisms remain elusive. The receptor-like kinase (RLK) family member FERONIA modulates the growth-defense tradeoff in Arabidopsis. Here, we established that rice FERONIA-like RLK 7 (FLR7) controls rhizosphere oxygen levels by methylene blue staining, oxygen flux, and potential measurements. The formation of oxygen-transporting aerenchyma in roots is negatively regulated by FLR7. We further characterized the root microbiota of 11 FLR mutants including flr7 and wild-type Nipponbare (Nip) grown in the field by 16S ribosomal RNA gene profiling and demonstrated that the 11 FLRs are involved in regulating rice root microbiome formation. The most abundant anaerobic-dependent genus Anaeromyxobacter in the Nip root microbiota was less abundant in the root microbiota of all these mutants, and this contributed the most to the community differences between most mutants and Nip. Metagenomic sequencing revealed that flr7 increases aerobic respiration and decreases anaerobic respiration in the root microbiome. Finally, we showed that a representative Anaeromyxobacter strain improved submergence tolerance in rice via FLR7. Collectively, our findings indicate that FLR7 mediates changes in rhizosphere oxygen levels and enriches the beneficial dominant genus Anaeromyxobacter and may provide insights for developing plant flood prevention strategies via the use of environment-specific functional soil microorganisms.


Subject(s)
Bacteria , Oryza , Bacteria/genetics , Rhizosphere , Plant Roots/genetics , Soil Microbiology , Soil
4.
Sci Total Environ ; 921: 171109, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387563

ABSTRACT

Microplastics (MPs), an emerging environmental contaminant, have raised growing health apprehension due to their detection in various human biospecimens. Despite extensive research into their prevalence in the environment and the human body, the ramifications of their existence within the enclosed confines of the human eye remain largely unexplored. Herein, we assembled a cohort of 49 patients with four ocular diseases (macular hole, macular epiretinal membrane, retinopathy and rhegmatogenous retinal detachment) from two medical centers. After processing the samples with an optimized method, we utilized Laser Direct Infrared (LD-IR) spectroscopy and Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) to analyze 49 vitreous samples, evaluating the characteristics of MPs within the internal environment of the human eye. Our results showed that LD-IR scanned a total of 8543 particles in the composite sample from 49 individual vitreous humor samples, identifying 1745 as plastic particles, predominantly below 50 µm. Concurrently, Py-GC/MS analysis of the 49 individual samples corroborated these findings, with nylon 66 exhibiting the highest content, followed by polyvinyl chloride, and detection of polystyrene. Notably, correlations were observed between MP levels and key ocular health parameters, particularly intraocular pressure and the presence of aqueous humor opacities. Intriguingly, individuals afflicted with retinopathy demonstrated heightened ocular health risks associated with MPs. In summary, this research provides significant insights into infiltration of MP pollutants within the human eye, shedding light on their potential implications for ocular health and advocating for further exploration of this emerging health risk.


Subject(s)
Retinal Diseases , Water Pollutants, Chemical , Humans , Vitreous Body/chemistry , Microplastics , Plastics/analysis , Gas Chromatography-Mass Spectrometry , Water Pollutants, Chemical/analysis
5.
Commun Biol ; 7(1): 20, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182756

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is a heterogeneous disease, and a highstromal/desmoplastic tumor microenvironment (TME) is associated with a poor outcome. Stromal cell subtypes, including fibroblasts, myofibroblasts, and cancer-associated mesenchymal stem cells, establish a complex network of paracrine signaling pathways with tumor-infiltrating immune cells that drive effector cell tumor immune exclusion and inhibit the antitumor immune response. In this work, we integrate single-cell transcriptomics of the HGSOC TME from public and in-house datasets (n = 20) and stratify tumors based upon high vs. low stromal cell content. Although our cohort size is small, our analyses suggest a distinct transcriptomic landscape for immune and non-immune cells in high-stromal vs. low-stromal tumors. High-stromal tumors have a lower fraction of certain T cells, natural killer (NK) cells, and macrophages, and increased expression of CXCL12 in epithelial cancer cells and cancer-associated mesenchymal stem cells (CA-MSCs). Analysis of cell-cell communication indicate that epithelial cancer cells and CA-MSCs secrete CXCL12 that interacte with the CXCR4 receptor, which is overexpressed on NK and CD8+ T cells. Dual IHC staining show that tumor infiltrating CD8 T cells localize in proximity of CXCL12+ tumor area. Moreover, CXCL12 and/or CXCR4 antibodies confirm the immunosuppressive role of CXCL12-CXCR4 in high-stromal tumors.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Single-Cell Analysis , Signal Transduction , Antibodies , Tumor Microenvironment
6.
Animals (Basel) ; 14(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38254417

ABSTRACT

In order to explore the main regulatory genes and related pathways of growth traits, transcriptome sequencing was first performed on the brain, liver, and muscle tissues of 3-month-old M. armatus with different growth rates. By comparative transcriptome analysis of fast-growing and slow-growing groups of M. armatus, a total of 2887 DEGs were screened, of which 59 up-regulated genes and 105 down-regulated genes were detected in the brain, 146 up-regulated genes and 202 down-regulated genes were detected in the liver, and 529 up-regulated genes and 1846 down-regulated genes were detected in muscle, including insulin-like growth factor binding protein 1a (IGFBP1A), insulin-like growth factor binding protein 1b (IGFBP1B), myosin, light chain 1 (MYL1), and myoglobin (MB). Through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we identified a total of 288 significantly enriched GO entries and 68 significantly enriched KEGG pathways related to growth, such as skeletal muscle tissue development, insulin-like growth factor binding, and the mitotic cell cycle. These key genes and signaling pathways may play a key role in regulating the growth of M. armatus. Digging into the regulatory mechanisms of these key genes will provide a theoretical basis for further exploration of the molecular mechanisms related to the growth and development of M. armatus, and help to breed new varieties of M. armatus with rapid growth.

7.
Biomaterials ; 305: 122467, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224643

ABSTRACT

Impaired angiogenesis, bacterial infection, persistent severe pain, exacerbated inflammation, and oxidative stress injury are intractable problems in the treatment of chronic diabetic ulcer wounds. A strategy that effectively targets all these issues has proven challenging. Herein, an in-situ sprayable nanoparticle-gel composite comprising platinum clusters (Pt) loaded-mesoporous polydopamine (MPDA) nanoparticle and QX-314-loaded fibrin gel (Pt@MPDA/QX314@Fibrin) was developed for diabetic wound analgesia and therapy. The composite shows good local analgesic effect of QX-314 mediated by near-infrared light (NIR) activation of transient receptor potential vanilloid 1 (TRPV1) channel, as well as multifunctional therapeutic effects of rapid hemostasis, anti-inflammation, antioxidation, and antibacterial properties that benefit the fast-healing of diabetic wounds. Furthermore, it demonstrates that the composite, with good biodegradability and biosafety, significantly relieved wound pain by inhibiting the expression of c-Fos in the dorsal root ganglion and the activation of glial cells in the spinal cord dorsal horn. Consequently, our designed sprayable Pt@MPDA/QX314@Fibrin composite with good biocompatibility, NIR activation of TRPV1 channel-mediated QX-314 local wound analgesia and comprehensive treatments, is promising for chronic diabetic wound therapy.


Subject(s)
Diabetes Mellitus , Diazonium Compounds , Lidocaine/analogs & derivatives , Nanocomposites , Pyridines , Rats , Animals , Pain , Analgesics/therapeutic use , Nanocomposites/therapeutic use , Fibrin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
8.
ACS Omega ; 8(39): 36471-36478, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810696

ABSTRACT

The nonisothermal thermal decomposition kinetics of 4,4'-azobis-1,2,4-triazole (ATRZ) at different heating rates (5, 10, 15, and 20 °C·min-1) were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC) studies. The thermal decomposition kinetic parameters such as apparent activation energy (E) and pre-exponential factor (A) were calculated by the Kissinger, Ozawa, and Satava-Sestak methods. The E and A values calculated by the above three methods are very close, which are 391.1 kJ·mol-1/1034.92 s-1, 381.1 kJ·mol-1/1034.30 s-1, and 393.4 kJ·mol-1/1035.76 s-1, respectively. Then, the decomposition mechanism function of ATRZ is analyzed by the calculated results. The results show that the decomposition temperature of ATRZ is about 300 °C and the exothermic decomposition speed is fast. The decomposition pathway of ATRZ was analyzed by pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). The thermal decomposition kinetic equation of the ATRZ was deduced.

9.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685943

ABSTRACT

The synthesis of the new energetic material 4-amino-3-hydrazino-5-methyl-1,2,4-triazole, which shows excellent performance and reliable safety, has drawn attention recently. To fully characterize this material, a comprehensive analysis was performed using various techniques, including differential scanning calorimetry (DSC), infrared spectroscopy (IR), elemental analysis, and 1H and 13C NMR spectroscopy. Additionally, three compounds, 3, 5 and 9, were further characterized using single X-ray diffraction. The X-ray data suggested that extensive hydrogen bonds affect molecular structure by means of intermolecular interactions. In order to evaluate the explosive properties of these synthesized compounds, detonation pressures and velocities were calculated using EXPLO5 (V6.01). These calculations were carried out utilizing experimental data, including density and heat of formation. Among the explosives tested, compounds 7 and 8 exhibited zero oxygen balance and demonstrated exceptional detonation properties. Compound 7 achieved the highest recorded detonation pressure, at 34.2 GPa, while compound 8 displayed the highest detonation velocity, at 8887 m s-1.


Subject(s)
Explosive Agents , Salts , Animals , Calorimetry, Differential Scanning , Estrus , Ions
10.
Plants (Basel) ; 12(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37653850

ABSTRACT

Calmodulins (CaMs) and Calmodulin-like proteins (CMLs) are vital in plant growth, development, and stress responses. However, CaMs and CMLs have not been fully identified and characterized in brown algae, which has been evolving independently of the well-studied green plant lineage. In this study, whole-genome searches revealed one SjCaM and eight SjCMLs in Saccharina japonica, and one EsCaM and eleven EsCMLs in Ectocarpus sp. SjCaM and EsCaM encoded identical protein products and shared 88.59-89.93% amino acid identities with Arabidopsis thaliana AtCaMs, thereby indicating that brown algae CaMs retained a similar Ca2+ sensors function as in plants. The phylogenetic and gene structure analysis results showed that there was significant divergence in the gene sequences among brown algae CMLs. Furthermore, evolutionary analysis indicated that the function of brown alga CMLs was relatively conserved, which may be related to the fact that brown algae do not need to face complex environments like terrestrial plants. Regulatory elements prediction and the expression analysis revealed the probable functioning of SjCaM/CML genes in gametophyte development and the stress response in S. japonica. In addition, the SjCaM/SjCMLs interacting proteins and chemicals were preliminarily predicted, suggesting that SjCaM/SjCMLs might play putative roles in Ca2+/CaM-mediated growth and development processes and stimulus responses. Therefore, these results will facilitate our understanding of the evolution of brown algae CaMs/CMLs and the functional identification of SjCaM/SjCMLs.

11.
ACS Appl Mater Interfaces ; 15(35): 41580-41589, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37609932

ABSTRACT

A series of high-nitrogen compounds, including a unique molecule 2,2'-azobis(1,5'-bitetrazole) with a branched N10 chain and 1,5'-bitetrazolate-2N-oxides, were synthesized successfully based on C-N-linked 1,5'-bistetrazoles using azo coupling of N-amine bonds and N-oxide introduction strategies. All compounds were characterized by NMR spectroscopy, IR spectroscopy, elemental analysis, and differential scanning calorimetry, in which the structures of five compounds were further determined by single-crystal X-ray diffraction analysis (2, T-N10B, 3a, 3b, and THX). The nitrogen contents of these five compounds range from 63.62 (THX) to 83.43% (T-N10B), which are much higher than that of CL-20 (38.34%). The heat of formation for the prepared compounds was calculated by using the Gaussian 09 program, with T-N10B having the highest value of 5.13 kJ g-1, about 6 times higher than that of CL-20 (0.83 kJ g-1). The calculated detonation performances by EXPLO5 v6.05.04 show that THX has excellent detonation performance (D = 9581 m s-1, P = 35.93 GPa) and a remarkable specific impulse (Isp = 284.9 s).

12.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333262

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is a heterogeneous disease, and a high stromal/desmoplastic tumor microenvironment (TME) is associated with a poor outcome. Stromal cell subtypes, including fibroblasts, myofibroblasts, and cancer-associated mesenchymal stem cells, establish a complex network of paracrine signaling pathways with tumor-infiltrating immune cells that drive effector cell tumor immune exclusion and inhibit the antitumor immune response. Single-cell transcriptomics of the HGSOC TME from public and in-house datasets revealed a distinct transcriptomic landscape for immune and non-immune cells in high-stromal vs. low-stromal tumors. High-stromal tumors had a lower fraction of certain T cells, natural killer (NK) cells, and macrophages and increased expression of CXCL12 in epithelial cancer cells and cancer-associated mesenchymal stem cells (CA-MSCs). Analysis of cell-cell communication indicated that epithelial cancer cells and CA-MSCs secreted CXCL12 that interacted with the CXCR4 receptor, which was overexpressed on NK and CD8 + T cells. CXCL12 and/or CXCR4 antibodies confirmed the immunosuppressive role of CXCL12-CXCR4 in high-stromal tumors.

13.
Br J Pharmacol ; 180(24): 3234-3253, 2023 12.
Article in English | MEDLINE | ID: mdl-37350044

ABSTRACT

BACKGROUND AND PURPOSE: Acute lung injury (ALI) is a serious, life-threatening inflammation of the lungs that still lacks effective treatment. We previously showed that serine protease inhibitor B1 (SerpinB1) protects against ALI induced by orthotopic autologous liver transplantation. However, the role of SerpinB1 in lipopolysaccharide (LPS)-induced ALI and its regulatory mechanisms are not known. EXPERIMENTAL APPROACH: Wild-type (WT) and SerpinB1 knockout (KO) mice were treated with intratracheal LPS stimulation to induce ALI. Some of the WT and KO mice were injected i.p. with melatonin, a rhythm-related protein Rev-erbα agonist. The circadian rhythm in WT mice was disrupted by exposing mice to 24 h of continuous dark or light conditions after intratracheal LPS. Neutrophils were isolated from alveolar lavage fluid of WT and KO mice, and from human peripheral blood. Neutrophils were treated with LPS and melatonin. KEY RESULTS: Disruption of circadian rhythm by either 24-h dark or light conditions exacerbated LPS-induced ALI and decreased expression of Rev-erbα and SerpinB1 protein in lung, whereas melatonin treatment increased SerpinB1 expression and attenuated LPS-induced ALI in WT mice, but not in KO mice. In isolated neutrophils, Rev-erbα was co-localized with SerpinB1 and bound to its promoter to trigger SerpinB1 transcription. Furthermore, LPS stimulation increased formation of neutrophil extracellular traps, which was reversed by melatonin treatment in neutrophils from WT mice, but not from KO mice. CONCLUSION AND IMPLICATIONS: In mice, SerpinB1 is rhythmically regulated by Rev-erbα, and its down-regulation exacerbates LPS-induced ALI by inducing formation of neutrophil extracellular traps.


Subject(s)
Acute Lung Injury , Melatonin , Mice , Animals , Humans , Lipopolysaccharides/pharmacology , Serine Proteinase Inhibitors/pharmacology , Melatonin/pharmacology , Melatonin/metabolism , Lung , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Mice, Knockout , Mice, Inbred C57BL
14.
Adv Healthc Mater ; 12(20): e2203359, 2023 08.
Article in English | MEDLINE | ID: mdl-36977502

ABSTRACT

Inhalation of xenon gas improves acute kidney injury (AKI). However, xenon can only be delivered through inhalation, which causes non-specific distribution and low bioavailability of xenon, thus limiting its clinical application. In this study, xenon is loaded into platelet membrane-mimicking hybrid microbubbles (Xe-Pla-MBs). In ischemia-reperfusion-induced AKI, intravenously injected Xe-Pla-MBs adhere to the endothelial injury site in the kidney. Xe-Pla-MBs are then disrupted by ultrasound, and xenon is released to the injured site. This release of xenon reduced ischemia-reperfusion-induced renal fibrosis and improved renal function, which are associated with decreased protein expression of cellular senescence markers p53 and p16, as well as reduced beta-galactosidase in renal tubular epithelial cells. Together, platelet membrane-mimicking hybrid microbubble-delivered xenon to the injred site protects against ischemia-reperfusion-induced AKI, which likely reduces renal senescence. Thus, the delivery of xenon by platelet membrane-mimicking hybrid microbubbles is a potential therapeutic approach for AKI.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Humans , Xenon/pharmacology , Xenon/metabolism , Xenon/therapeutic use , Microbubbles , Kidney/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Reperfusion Injury/drug therapy , Cellular Senescence
15.
Gynecol Endocrinol ; 39(1): 2181652, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36824010

ABSTRACT

AIM: Among the natural polyphenolic compounds, resveratrol (RES) is known for reducing the effects of declining reproductive power through resisting senility, anti-oxidant and anti-inflammatory, while the molecular mechanism of RES in human ovaries is unclear. We aimed to evaluate the most likely mechanisms of RES against apoptosis induced by H2O2 in human ovary granulosa cells. METHODS: Ovarian granulosa cells from infertile women (≤35 years old) were collected. Those patients defined as polycystic ovary syndrome (PCOS), poor ovarian responder (POR) and Endometriosis were excluded. Then they were randomly divided into control group, model group and the treatment group. Cellular apoptosis was analyzed by flow cytometer method. The related protein and mRNA expressions were detected by western blot and RT-PCR. RESULTS: Apoptosis rates of the treatment group containing RES with concentrations of 1 µM and 10 µM were significantly decreased (p < 0.001). Western blot results demonstrated that the proteins levels of transforming growth factor-ß (TGF-ß), Bax and Caspase 9 were decreased, and Bcl-2 was increased under RES treatment, while the protein levels of Caspase 8, Caspase 3, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) expressed no significant difference. The results by RT-PCR of follicle and ovarian development related mRNA factors were consistent with that of western blot assay. CONCLUSION: In conclusion, the present study provides the evidence that RES may affects apoptotic factors to protect human ovarian state.


Subject(s)
Infertility, Female , Polycystic Ovary Syndrome , Female , Humans , Adult , Ovary/metabolism , Resveratrol/pharmacology , Infertility, Female/drug therapy , Infertility, Female/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Granulosa Cells/metabolism , Polycystic Ovary Syndrome/metabolism , Apoptosis , RNA, Messenger/metabolism
16.
Parkinsons Dis ; 2022: 6915627, 2022.
Article in English | MEDLINE | ID: mdl-36483978

ABSTRACT

Introduction: Postoperative delirium can increase cognitive impairment and mortality in patients with Parkinson's disease. The purpose of this study was to develop and internally validate a clinical prediction model of delirium after deep brain stimulation of the subthalamic nucleus in Parkinson's disease under general anesthesia. Methods: We conducted a retrospective observational cohort study on the data of 240 patients with Parkinson's disease who underwent deep brain stimulation of the subthalamic nucleus under general anesthesia. Demographic characteristics, clinical evaluation, imaging data, laboratory data, and surgical anesthesia information were collected. Multivariate logistic regression was used to develop the prediction model for postoperative delirium. Results: A total of 159 patients were included in the cohort, of which 38 (23.90%) had postoperative delirium. Smoking (OR 4.51, 95% CI 1.56-13.02, p < 0.01) was the most important risk factor; other independent predictors were orthostatic hypotension (OR 3.42, 95% CI 0.90-13.06, p=0.07), inhibitors of type-B monoamine oxidase (OR 3.07, 95% CI 1.17-8.04, p=0.02), preoperative MRI with silent brain ischemia or infarction (OR 2.36, 95% CI 0.90-6.14, p=0.08), Hamilton anxiety scale score (OR 2.12, 95% CI 1.28-3.50, p < 0.01), and apolipoprotein E level in plasma (OR 1.48, 95% CI 0.95-2.29, p=0.08). The area under the receiver operating characteristic curve (AUC) was 0.76 (95% CI 0.66-0.86). A nomogram was established and showed good calibration and clinical predictive capacity. After bootstrap for internal verification, the AUC was 0.74 (95% CI 0.66-0.83). Conclusion: This study provides evidence for the independent inducing factors of delirium after deep brain stimulation of the subthalamic nucleus in Parkinson's disease under general anesthesia. By predicting the development of delirium, our model may identify high-risk groups that can benefit from early or preventive intervention.

17.
Micromachines (Basel) ; 13(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422431

ABSTRACT

Acoustic radiation forces have been extensively studied regarding static particles, cell patterning, and dynamic transportation. Compared with standing wave manipulation, traveling wave manipulation can be more easily modulated in real time and has no matching requirement between the size of the resonant cavity and the sound frequency. In this work, we present an efficient, multi-layer microparticle pattern technique in a 3D polygon cavity with a traveling bulk acoustic wave. There are two types of excitation modes: the interval excitation mode (IEM) and the adjacent excitation mode (AEM). We conducted theoretical and simulation analyses, and our results show that both of these modes can form particle arrays in the resonant cavity, which is in accordance with the experimental results. The array spacings in the IEM and AEM were about 0.8 mm and 1.3 mm, respectively, while the acoustic frequency was 1MHz. Double-layer particle patterns were arrayed by a double in the resonant cavity. The spacing between the two layers was set at 3.0 mm. The line spacings were about 0.4 mm in both layers. The line width was 0.2 mm, which was larger than the single layer. The results show that ultrasonic traveling waves are a feasible method to manipulate particles and cells that form 3D patterns in particle-fluid flows.

18.
Article in English | MEDLINE | ID: mdl-36231263

ABSTRACT

Restaurant online review websites have made changes to adapt to customers' shifting needs during the COVID-19 crisis. Based on information behavior theory and social penetration theory, the present study investigated the changes in customers' emotions and how the volume of online reviews as an indication of sales is impacted by the instructional (i.e., with quantitative variables) and emotional (i.e., with qualitative variables) information on review websites. By comparing the same month (January-April) during 2017-2020, positive sentiment experienced a plunge, while negative sentiment showed an upsurge in April 2020. The volume of reviews was impacted by five quantitative variables (i.e., confirmed COVID-19 case number, food delivery option, takeout option, delivery fee, and delivery time) and seven qualitative variables (i.e., anticipation, fear, trust, anger, disgust, joy, and sadness). This study provides new insight into understanding information content on review websites during the crisis (e.g., pandemic) from the perspective of health risk communication.


Subject(s)
COVID-19 , Social Media , Anger , COVID-19/epidemiology , Emotions , Humans , Pandemics , Restaurants
19.
Life (Basel) ; 12(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36013320

ABSTRACT

Determining the concentration of glutathione is crucial for developing workable medical diagnostic strategies. In this paper, we developed an electrochemical sensor by electrodepositing amino-based reactive groups and gold-platinum nanomaterials on the surface of glassy carbon electrode successively. The sensor was characterized by cyclic voltammetry (CV), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and electrochemical impedance spectra (EIS). Results showed that Au@Pt nanoparticles with the size of 20-40 nm were presented on the surface of electrode. The sensor exhibits excellent electrocatalytic oxidation towards glutathione. Based on this, we devised an electrochemical biosensor for rapid and sensitive detection of glutathione. After optimizing experimental and operational conditions, a linear response for the concentration of GSH, in the range of 0.1-11 µmol/L, with low detection and quantification limits of 0.051 µM (S/N = 3), were obtained. The sensor also exhibits superior selectivity, reproducibility, low cost, as well as simple preparation and can be applied in human serum sample detection.

20.
Article in English | MEDLINE | ID: mdl-35457658

ABSTRACT

The value-added utilization of waste resources to synthesize functional materials is important to achieve the environmentally sustainable development. In this paper, the biochar supported graphene oxide (BGO) materials were prepared by using navel orange peel and natural graphite. The optimal adsorption parameters were analyzed by response surface methodology under the conditions of solution pH, adsorbent dosage, and rotating speed. The adsorption isotherm and kinetic model fitting experiments were carried out according to the optimal adsorption parameters, and the mechanism of BGO adsorption of Pb2+ was explained using Scanning Electron Microscope (SEM-EDS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). Compared with virgin biochar, the adsorption capacity of Pb2+ on biochar supported graphene oxide was significantly increased. The results of response surface methodology optimization design showed that the order of influence on adsorption of Pb2+ was solution pH > adsorbent dosage > rotating speed. The optimal conditions were as follows: solution pH was 4.97, rotating speed was 172.97 rpm, and adsorbent dosage was 0.086 g. In the adsorption−desorption experiment, the desorption efficiency ranged from 54.3 to 63.3%. The process of Pb2+ adsorption by BGO is spontaneous and endothermic, mainly through electrostatic interaction and surface complexation. It is a heterogeneous adsorption process with heterogeneous surface, including surface adsorption, external liquid film diffusion, and intra-particle diffusion.


Subject(s)
Citrus sinensis , Graphite , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Hydrogen-Ion Concentration , Kinetics , Lead , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...