Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Chemosphere ; 361: 142573, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852630

ABSTRACT

Dynamic impacts of short-term enrofloxacin (ENR) exposure on juvenile marine fish are not well understood, and the underlying mechanisms remain unclear. We therefore investigated the accumulation and elimination of ENR in the liver of juvenile black seabream Acanthopagrus schlegelii. Meanwhile, the dynamic alterations of biochemical parameters and liver transcriptomes after short-term bath immersion and withdrawal treatment were explored. The results indicated that the contents of ENR in the liver were significantly increased after bath administration for 24 h, and then quickly declined to very low concentrations along with the decontamination time increasing. Judging from the changes in biochemical indicators and liver transcriptomic alterations, 0.5 and 1 mg/L ENR exposure for 24 h triggered oxidative stress, impairment of immune system, as well as aberrant lipid metabolism via differential molecular pathways. Interestingly, biochemical and transcriptome analysis as well as integrated biomarker response (IBR) values showed that more significant changes appeared in 1 mg/L ENR group at decontamination periods, which indicated that the impact of high dose ENR on juvenile A. schlegelii may persist even after depuration for 7 days. These results revealed that the risk of short-term bath of 1 mg/L ENR should not be overlooked even after depuration period. Therefore, attention should be paid to the dosage control when administering the drug to juvenile A. schlegelii, and the restoration of physiological disturbance may be an important factor in formulating a reasonable treatment plan.


Subject(s)
Enrofloxacin , Liver , Sea Bream , Water Pollutants, Chemical , Animals , Sea Bream/metabolism , Sea Bream/genetics , Water Pollutants, Chemical/toxicity , Liver/metabolism , Liver/drug effects , Oxidative Stress/drug effects , Transcriptome/drug effects , Anti-Bacterial Agents/toxicity , Lipid Metabolism/drug effects
2.
Nat Commun ; 15(1): 4136, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755156

ABSTRACT

Mixed Sn-Pb perovskites have emerged as promising photovoltaic materials for both single- and multi-junction solar cells. However, achieving their scale-up and practical application requires further enhancement in stability. We identify that their poor thermal conductivity results in insufficient thermal transfer, leading to heat accumulation within the absorber layer that accelerates thermal degradation. A thermal regulation strategy by incorporating carboranes into perovskites is developed; these are electron-delocalized carbon-boron molecules known for their efficient heat transfer capability. We specifically select ortho-carborane due to its low thermal hysteresis. We observe its existence through the perovskite layer showing a decreasing trend from the buried interface to the top surface, effectively transferring heat and lowering the surface temperature by around 5 °C under illumination. o-CB also facilitates hole extraction at the perovskite/PEDOT:PSS interface and reduces charge recombination. These enable mixed Sn-Pb cells to exhibit improved thermal stability, retaining 80% of their initial efficiencies after aging at 85 °C for 1080 hours. When integrated into monolithic all-perovskite tandems, we achieve efficiencies of over 27%. A tandem cell maintains 87% of its initial PCE after 704 h of continuous operation under illumination.

3.
Chem Sci ; 15(21): 8156-8162, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817557

ABSTRACT

The first straightforward strategy for the synthesis of 1,4-dicarbonyl Z-alkenes has been developed via an electrochemical cross-coupling reaction of sulfoxonium ylides and alkynes with water. The metal-free protocol showed an easy-to-handle nature, good functional group tolerance, and high Z-stereoselectivity, which is rare in previous cases. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments, cyclic voltammetry experiments, and density functional theory (DFT) studies.

4.
Org Lett ; 26(21): 4554-4559, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38767297

ABSTRACT

The direct allylic C(sp3)-H functionalization provides a straightforward protocol for the synthesis of valuable molecules. We report herein the first chemo- and site-selective method for allylic C(sp3)-H isothiocyanation of various internal alkenes under mild electrochemical conditions. This method exhibits broad functional group tolerance and excellent selectivity and can be applied for late-stage isothiocyanation of bioactive molecules. Combined experimental and computational studies indicate that the reaction proceeds via an unexpected [3,3]-sigmatropic rearrangement.

5.
Mar Pollut Bull ; 203: 116505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772172

ABSTRACT

Marine litter pollution poses a significant threat to offshore ecosystems, eliciting widespread concern. We investigated seafloor litter patterns in the Pearl River Estuary and adjacent coastal waters of China in 2023 via bottom trawl survey. Average number and weight densities were found to be 154.34 ± 30.95 n/km2 and 2384.63 ± 923.98 g/km2, respectively. Plastic was the most abundant material by number density (79.07 %), and rubber the highest by weight density (22.93 %). Overall number density varied from 40.50 ± 22.50 to 221.13 ± 52.44 n/km2, with the highest in Daya Bay and the lowest in Guanghai Bay. Weight density varied from 189.93 ± 71.94 to 5386.70 ± 3050.30 g/km2, with the highest in Qiao Island and the lowest in Honghai Bay. The main source was plastic bags and wrappers. The Pearl River Delta and Daya Bay were identified as seafloor litter distribution hotspots. Controlling plastic waste input is crucial for reducing seafloor litter in the Pearl River Estuary.


Subject(s)
Environmental Monitoring , Estuaries , Plastics , Rivers , China , Plastics/analysis , Ecosystem
6.
J Org Chem ; 89(9): 6465-6473, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38644574

ABSTRACT

An electrochemical protocol for benzylic C(sp3)-H aminopyridylation via direct C-H/N-H cross-coupling of alkylarenes with N-aminopyridinium triflate has been developed. This method features excellent site-selectivity, broad substrate scope, redox reagent-free and facile scalability. The generated benzylaminopyridiniums can be readily converted to benzylamines via electroreductive N-N bond cleavage.

7.
Org Biomol Chem ; 21(43): 8646-8650, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37870475

ABSTRACT

A straightforward electrochemical protocol for efficient hydrogenation of unsaturated CC bonds has been reported in an undivided cell. A series of versatile 1,4-diketones are smoothly generated under metal-free and external-reductant-free electrolytic conditions. Moreover, the tolerance of various functional groups and decagram-scale experiments have shown the practicability and potential applications of this methodology. Moreover, a range of heterocyclic compounds were easily prepared through follow-up procedures of 1,4-diketones.

8.
Chem Commun (Camb) ; 59(81): 12164-12167, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37743839

ABSTRACT

An electrooxidation direct difunctionalization of alkynes with sulfonyl hydrazides has been developed for the construction of sulfonyl alkenyl sulfates in the absence of metal catalysts and a stoichiometric amount of oxidants. Notably, it is the first example to verify that SO42- ions can act as a nucleophilic reagent for the preparation of organosulfates.

9.
Pestic Biochem Physiol ; 194: 105514, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532329

ABSTRACT

As a ubiquitous environmental pollutant in China, triazophos (TP) is known to have neurotoxicity, oxidative stress, and reproductive toxicity to mussels. To investigate the molecular mechanisms of TP toxicity, metabolic changes in the digestive glands of Perna viridis in different sexes were examined after treated with 35 µg/L TP. Notably, 158 significant different metabolites (SDMs) were detected in TP-treated mussels and more than half of the SDMs were lipids and lipid-like molecules, which suggested that TP disturbed the lipid metabolism of P. viridis. In addition, metabolites associated with neurotoxicity and reproductive disturbance were also detected in female and male mussels. Moreover, a larger number of SDMs were found in male mussels (120 SDMs) than females (99 SDMs), and 60 common metabolites exhibited consistent variation tendency and similar magnitude in both sexes. The metabolic alternations in female and male mussels displayed similar protective mechanisms and also sex-specific responses, male mussels were more sensitive to TP exposure. This research provided new data about the molecular mechanisms of TP toxicity and the gender specific changes in mussels after treated by chemicals.


Subject(s)
Perna , Water Pollutants, Chemical , Male , Animals , Female , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Organothiophosphates/toxicity , Triazoles/metabolism , Perna/chemistry , Perna/metabolism
10.
Org Lett ; 24(50): 9322-9326, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36484520

ABSTRACT

An efficient electrochemical synthesis of sulfonated phenanthrenes via the reaction of internal alkynes with sulfonyl hydrazides has been established. The protocol does not require a metal catalyst or external oxidants, providing a green and mild route to functionalized phenanthrenes. Moreover, the compatibility of various functional groups and decagram-scale experimental conditions demonstrate the practicality of the electrochemical strategy.

11.
Chem Sci ; 13(34): 9940-9946, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36199637

ABSTRACT

We report an approach for the synthesis of benzothiophene motifs under electrochemical conditions by the reaction of sulfonhydrazides with internal alkynes. Upon the formation of a quaternary spirocyclization intermediate by the selective ipso-addition instead of an ortho-attack, the S-migration process was rationalized to lead to the products. Computational studies revealed the selectivity and the compatibility of drug molecules showcased the potential application of the protocols.

12.
Org Lett ; 24(40): 7410-7415, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36197136

ABSTRACT

The efficient electrochemically promoted [3 + 2] annulation of imidazo[1,2-a]pyridines with alkynes using traceless electrons as green reagents has been developed, leading to the synthesis of a large class of polycyclic heteroaromatics in good yields with a broad substrate scope under mild and green conditions. The scaled-up experiment, follow-up procedures, and potential biological applications show the practicability and feasibility of the electrochemical method.

13.
Org Lett ; 24(39): 7077-7081, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36148973

ABSTRACT

We report here a catalytic selective cage B4-H amination of o-carboranes employing an Ir(III) complex as a catalyst and anthranils as aminating agents, leading to a large class of B4-aminated o-carboranes with very high yields and a broad substrate scope under mild conditions without any oxidants. In these reactions, the carboxyl group serves as a traceless directing unit to determine the site selectivity and degree of substitution.

14.
Article in English | MEDLINE | ID: mdl-35351620

ABSTRACT

Triazophos (TP) is a widespread pollutant in aquatic environments. A sex-specific metabolic response in green-lipped mussel Perna viridis to TP exposure was observed in our previous study, and this led us to investigate the mechanisms associated with its toxicity. P. viridis were subjected to chronic exposure (15 days) to TP at 35 µg/L to compare the sex-biased transcriptomic profiles in the gonads of male and female mussels. We identified 632 differentially expressed genes (DEGs) (348 up-regulated and 284 down-regulated) in TP-exposed males, and only 61 DEGs (9 up-regulated and 52 down-regulated) in TP-exposed females. Many DEGs were found to be involved in the nervous, reproductive endocrine, oxidative stress, and immune systems of P. viridis. Additionally, enzymatic activity analysis indicated TP induced neurotoxic effects and oxidative damage to the mussels. Our results demonstrate that the stress response and molecular mechanisms of TP toxicology are different between female and male mussels.


Subject(s)
Insecticides , Perna , Water Pollutants, Chemical , Animals , Female , Gene Expression Profiling , Gonads , Insecticides/pharmacology , Male , Organophosphorus Compounds , Organothiophosphates , Triazoles , Water Pollutants, Chemical/metabolism
15.
Chem Sci ; 13(2): 478-485, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35126980

ABSTRACT

A new strategy is reported for intramolecular Buchner-type reactions using PIDA as a promotor. Traditionally, the Buchner reaction is achieved via Rh-carbenoids derived from RhII catalysts with diazo compounds. Herein, the first metal-free Buchner-type reaction to construct highly strained cycloheptatriene- and cyclopropane-fused lactams is presented. The advantage of these transformations is in their mild reaction conditions, simple operation, broad functional group compatibility and rapid synthetic protocol. In addition, scaled-up experiments and a series of follow-up synthetic procedures were performed to clarify the flexibility and practicability of this method. DFT calculations were carried out to clarify the mechanism.

16.
Org Lett ; 24(6): 1318-1322, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35129366

ABSTRACT

A highly efficient Ir-catalyzed regioselective cage B(4)-H acylmethylation of o-carboranyl acids using sulfoxonium ylides as alkylating regents has been developed, leading to the preparation of a large class of B(4)-acylmethylated o-carboranes in good to excellent yields with a broad substrate scope under redox neutral conditions. The -COOH moiety serves as the traceless directing group and controls the regioselectivity and monoselectivity.

17.
Sci Total Environ ; 807(Pt 1): 150814, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34626635

ABSTRACT

Due to strong endocrine disrupting effects, steroids in the environment have attracted substantial attention, with studies mostly focusing on the parent steroids. Here, we conducted the first investigation on the contamination profiles, possible sources, mass inventories, and ecological risks of 27 steroids and their metabolites in 15 typical fishing ports in Southeast China. Twelve steroids were detectable in the sediment samples with the total mean concentrations of 4.6-35 ng/g. High proportions of steroid metabolites were measured in the sediments and five metabolites were newly observed. Untreated municipal sewage and aquaculture wastes constitute the possible steroid sources in the studied fishing ports. The total inventories of steroids in fishing ports ranged from 2.1-16 mg/m2, with their metabolites being important contributors. The ecological risk analysis indicated high risks across all sampling sites mainly due to the contributions of parent steroids. Furthermore, our results found that progesterone is an acceptable chemical indicator for various steroids in sediments. This study provides the first evidence of steroid metabolites in the marine environment, calling for more studies in environmental behavior and ecotoxicology of steroid metabolites.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Aquaculture , China , Geologic Sediments , Steroids/analysis , Water Pollutants, Chemical/analysis
18.
Angew Chem Int Ed Engl ; 60(32): 17356-17361, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34081389

ABSTRACT

Molecular doping is an of significance approach to reduce defects density of perovskite and to improve interfacial charge extraction in perovskite solar cells. Here, we show a new strategy for chemical doping of perovskite via an organic small molecule, which features a fused tricyclic core, showing strong intermolecular π-Pb2+ interactions with under-coordinated Pb2+ in perovskite. This π-Pb2+ interactions could reduce defects density of the perovskite and suppress the nonradiative recombination, which was also confirmed by the density functional theory calculations. In addition, this doping via π-Pb2+ interactions could deepen the surface potential and downshift the work function of the doped perovskite film, facilitating the hole extraction to hole transport layer. As a result, the doped device showed high efficiency of 21.41 % with ignorable hysteresis. This strategy of fused tricyclic core-based doping provides a new perspective for the design of new organic materials to improve the device performance.

19.
Org Biomol Chem ; 19(13): 2895-2900, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33725062

ABSTRACT

The first nickel-catalyzed oxidative domino Csp3-H/N-H double isocyanide insertion reaction of acetamides with isocyanides has been developed for the synthesis of pyrrolin-2-one derivatives. A wide range of acetamides bearing various functional groups are compatible with this reaction system by utilizing Ni(acac)2 as a catalyst. In this transformation, isocyanide could serve as a C1 connector and insert into the inactive Csp3-H bond, representing an effective way to construct heterocycles.

20.
Article in English | MEDLINE | ID: mdl-33631342

ABSTRACT

Mercury is one of the major pollutants in the ocean, selenium causes toxicity beyond a certain limit, but there are few comparative toxic studies between them in halophytes. The study was to investigate the toxic effects of selenium (Se4+) and mercury (Hg2+) in halophyte Suaeda salsa at the level of genes, proteins and metabolites after exposure for 7 days. By integrating the results of proteomics and metabolomics, the pathway changed under different treatments were revealed. In Se4+-treated group, the changed 3 proteins and 10 metabolites participated in the process of substance metabolism (amino acid, pyrimidine), citrate cycle, pentose phosphate pathway, photosynthesis, energy, and protein biosynthesis. In Hg2+-treated group, the changed 10 proteins and 10 metabolites were related to photosynthesis, glycolysis, substance metabolism (cysteine and methionine, amino acid, pyrimidine), ATP synthesis and binding, tolerance, sugar-phosphatase activity, and citrate cycle. In Se4++ Hg2+-treated group, the changed 5 proteins an 12 metabolites involved in stress defence, iron ion binding, mitochondrial respiratory chain, structural constituent of ribosome, citrate cycle, and amino acid metabolism. Furthermore, the separate and combined selenium and mercury both inhibited growth of S. salsa, enhanced activity of antioxidant enzymes (superoxide dismutase, peroxidase and catalase), and disturbed osmotic regulation through the genes of choline monoxygenase and betaine aldehyde dehydrogenase. Our experiments also showed selenium could induce synergistic effects in S. salsa. In all, we successfully characterized the effects of selenium and mercury in plant which was helpful to evaluate the toxicity and interaction of marine pollutants.


Subject(s)
Chenopodiaceae/drug effects , Mercury/toxicity , Plant Proteins/metabolism , Salt-Tolerant Plants , Selenium/toxicity , Water Pollutants, Chemical/toxicity , Chenopodiaceae/growth & development , Metabolomics , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...